

Resilient PNT and Maritime Navigation

Sanna Kaasalainen

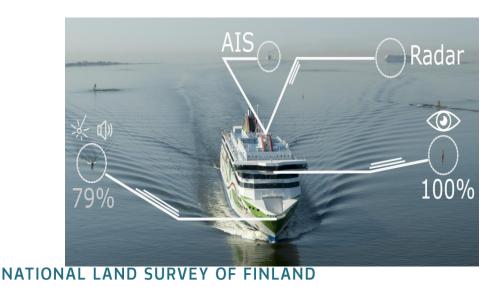
Finnish Geospatial Research Institute

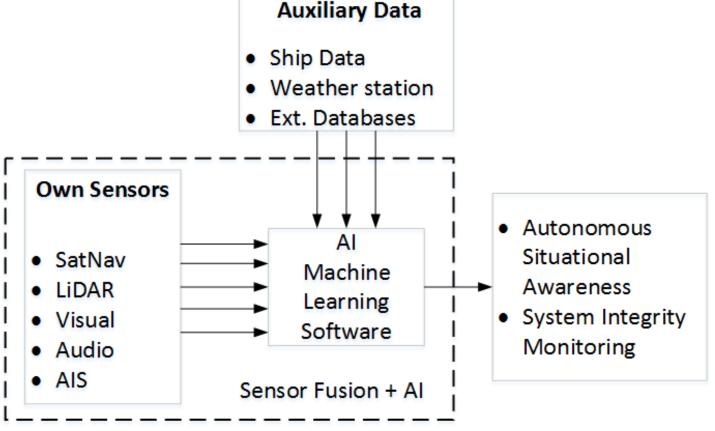
CGSIC

Research on Navigation and Positioning at the FGI

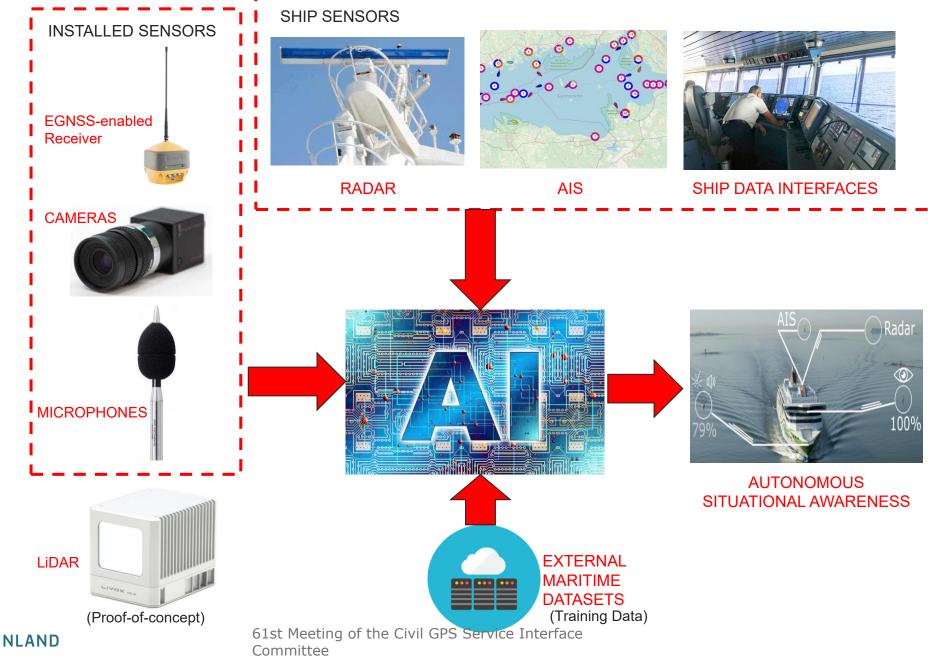
- Satellite and radio navigation
- Algorithms and sensor technology
- Positioning in challenging conditions
- Availability and security of spatial and temporal data
- Maritime situational awareness
- Intelligent transport and positioning

Maritime navigation Research at the FGI


Project Abbreviation	Project Name	Funding Agency	Duration
ENHANCE	Enabling Harbor to Harbor Autonomous Situational Awareness in Sea Ice Conditions	ESA	2021-2023
MARITIME AI- NAV	Artificial Intelligence/Machine Learning Sensor Fusion for Autonomous Vessel Navigation	ESA	2019-2021
PETAL	Position, navigation and timE TrAffic Light	ESA	2020-2021
LNAV	LiDAR and Aids to Navigation	Finnish Transport Infra Agency	2020
PRESTIGEFIN	Preliminary Study on Utilizing GNSS-based Techniques for Enhanced Height Tracking for Vessels in Finnish Waterways	Finnish Transport Infra Agency	2019
FAMOS	Finalizing Surveys for the Baltic Motorways of the SEA	EU Connecting Europe Facility	2017-2018
BONUS STORMWINDS	Strategic and Operational Risk Management for Wintertime Maritime Transportation System	EU	2015-2018
BONUS ESABALT	Enhanced Situational Awareness to Improve Maritime Safety in the Baltic	EU	2014-2016
VORIC	Vessel Operations and Routing in Ice Conditions	Business Finland	2015-2016
ARCSAT	Arctic Real-Time Satellite Services for the Publiceet and Commercial End-Use Committee	n &usitless ivil GPS e Finland	Service Interface 2013-2014



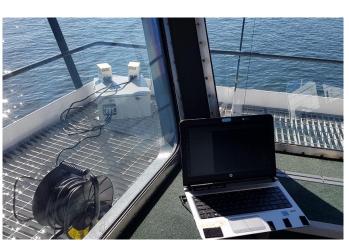
Maritime situational awareness


Maritime AI-NAV (ESA), ENHANCE (ESA), LNAV (Finnish Transport Infr Agency)

- Sensor integration and AI machine learning for autonomous situatio awareness
- Twitter: @ai_maritime, www.maritimeai.org/

61st Meeting of the Civil GPS Service Interface Committee Sensor Fusion for Autonomou s Vessel Navigation

NATIONAL LAND SURVEY OF FINLAND


*All MS MEGASTAR images courtesy of Tallink

TALLINK SHUTTLE MS MEGASTAR (HELINKI – TALLINN)

NATIONAL LAND SURVEY OF FINLAND

61st Meeting of the Civil GPS Service Interface Committee

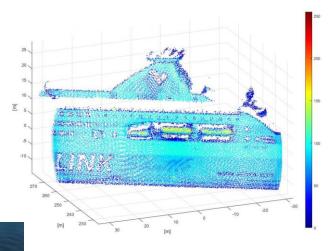
NATIONAL LAND SURVET OF FINLAND

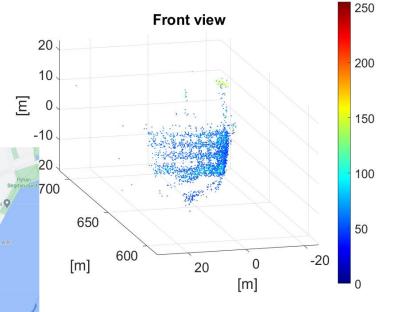
Committee

Maritime AI Nav @Tallink megastar

Automatic identificatio n of buoys and other objects based on camera imagery. Video by Toni Hammarber *g*

61st Meeting of the Civil GPS Service Interface Committee


Feasibility of LiDAR detec


Investigate the fundamental and theoretical applicability of the LiDAR towards maritime target detection

Livox Tele-15 long-range LiDAR

The visibility of three different sizes of vessels estimated detection with respect to the detection distance up to 1000 m
NATIONAL LAND SURVEY OF FINLAND Camera + AI up to 5 kr

 Image: State of the state

Findings from operational point of view

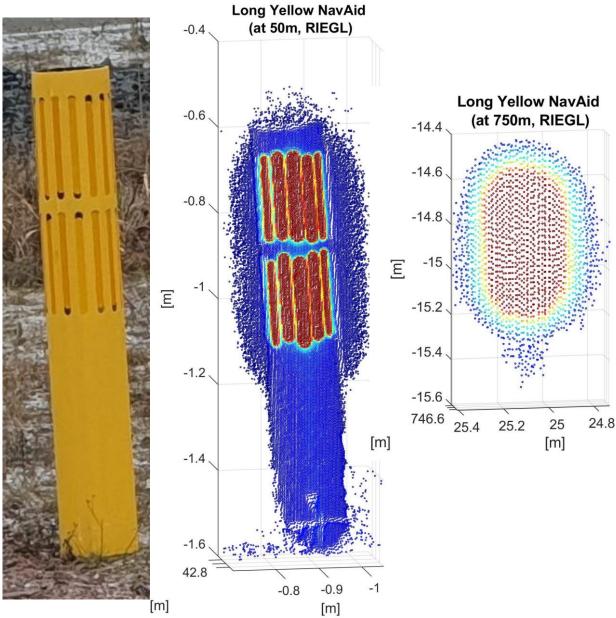
- Absolute localization of the vessel is possible with high-precision. Integrity, reliability, and continuous availability is the challenge in maritime (especially autonomous operations).
- Visual camera data seems to work well for reading the surroundings of the ship, even if the range is more limited than what a human can perceive (using binoculars). Directional zoom cameras could be an option.
- Eye-safe LIDAR is due to limited range only marginally useful on sea going ships and main use case would be as a parking sensor while berthing.
- Sound localisation presents an interesting aspect to ship systems. Existing elephant ear technology is rather low-tech and as such not very useful.
 Microphone placement is challenging, though.
- Access to a real ship, with real sensors is crucial to successful test campaigns and enables real-life realistic testing data

NATIONAL LAND SURVEY OF FINLAND

61st Meeting of the Civil GPS Service Interface Committee

GNSS related issues in maritime navigation

- The crew of Tallink Megastar reported about losing GNSS positioning for several minutes when being moored in a harbour (Helsinki and Tallinn)
- GNSS signals can be masked or reflected by harbour infrastructure which leads to degraded accuracy
- Apparently, some truck drivers use jammers to avoid being tracked


https://www.maanmittauslaitos.fi/en/topical_i ssues/how-make-ship-see-and-hear

LiDAR + Navigation

- Characterization of reflector equipped maritime navigation aids for commercial lidar visibility
 - Lab tests
 - Incidence angle and 'backscattered reflectance' analysis for various retroreflective materials (3M & Oralite)
 - Field tests
 - 5 nav. Aid segments measured at various distances with 2 commercial lidars (up to 800m)
- Visibility and detection analysis

=> Nav aids with reflectors are highly visible (in theory, well beyond 800m, eye-safely)

ESA-supported project tests autonomous vehicles in Finland

January 21, 2021 - By GPS World Staff O Comments Est. reading time: 2 minutes

- comments

News from the European Space Agency (ESA)

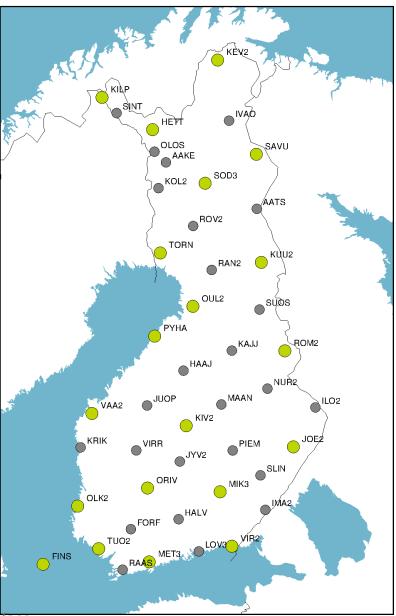
An ESA-supported project is testing autonomous vehicles on an intelligent road in Lapland, Finland.

Known as Snowbox, this 10-km stretch of forest-lined roadway on

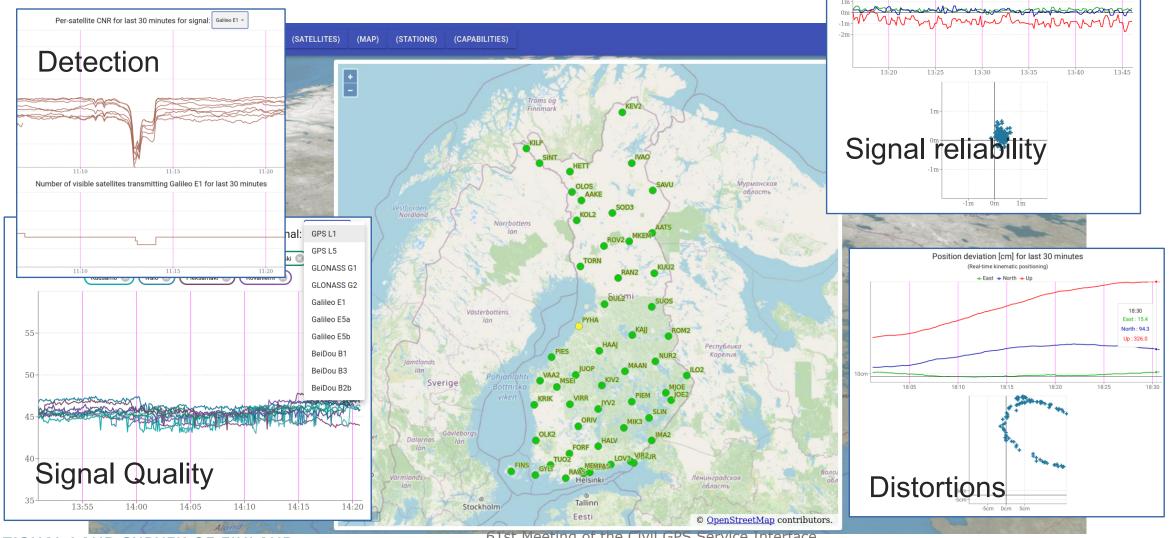
mosaic family expanding High precision GNSS modules LEARN MORE

GNSS + sensors in smart roads

https://www.gpswo rld.com/esasupported-projecttests-autonomousvehicles-infinland/?TrucksFoT


NATIONAL LAND SURVEY OF FINLAND

61st Meeting of the Civil GPS Service Interface Committee

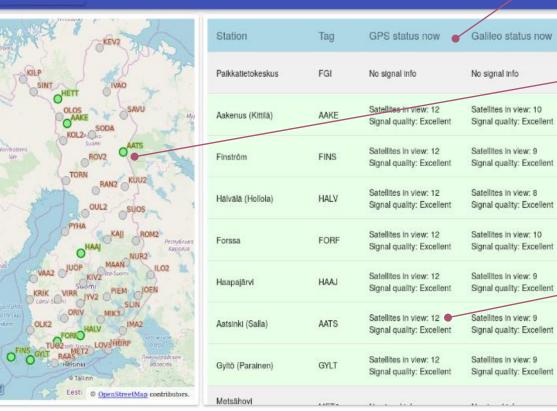

GNSS-Finland: Signal Quality Monitoring

Real-time GNSS signal quality from FinnRef (Finnish Transport and Communications Agency)

- 2019 prototype, 2020 operational + includes all GNSS systems, 2021 open to the public: <u>https://gnss-finland.nls.fi</u>
- Server and UI for user alerts
- Based on the national FinnRef network (50 stations)
- Development: FGI, maintenance: NLS production
- Parallel project from ESA: PETAL (Position, Navigation And Time Traffic Light)

GNSS-Finland User interf

NATIONAL LAND SURVEY OF FINLAND


61st Meeting of the Civil GPS Service Interface Committee Position deviation [m] for last 30 minutes (Single Point Single Frequency Multi-Constellation positioning)

- East - North - Up

`Traffic Lights'

GNSS FINLAND

Sverige

Color codes to help general public

More detailed/advance d information

NATIONAL LAND SURVEY OF FINLAND

61st Meeting of the Civil GPS Service Interface Committee

Last update

No signal info

Satellites in view: 10

Satellites in view: 9

Satellites in view: 8

Satellites in view: 10

Satellites in view: 9

Satellites in view: 9

Satellites in view: 9

Signal quality: Excellent

Details

C/NO: Greater than 40

C/NO: Between 37 and 40

DETAILS

SHOW

DETAILS

SHOW

DETAILS

SHOW

DETAILS

SHOW

C/NO: Less than 37

Signal quality definition:

Excellent

Satisfactory

Poor

No data

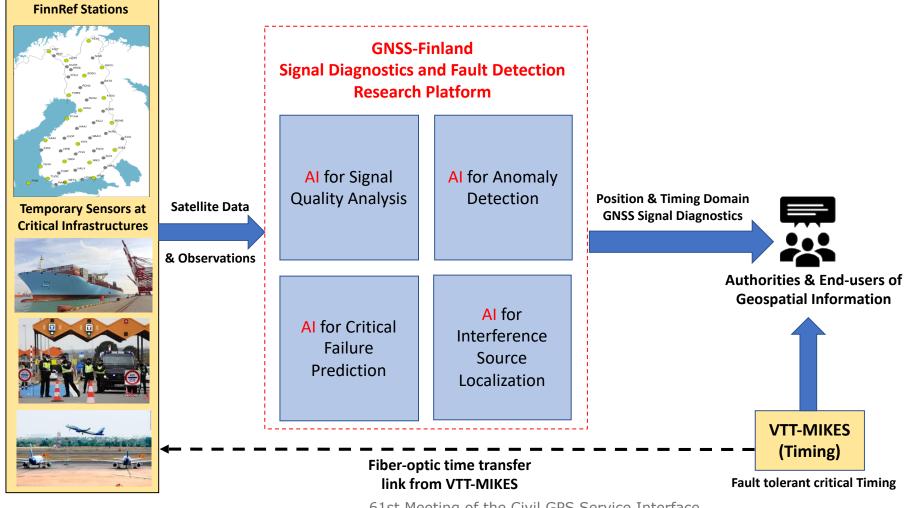
16:47:45

2019-06-10

2019-06-10

2019-06-10

2019-06-04


16:47:45

16:47:45

16:47:45

Extending GNSS-Finland to include time

NATIONAL LAND SURVEY OF FINLAND

61st Meeting of the Civil GPS Service Interface Committee

RF-SIGNALS

(((•)) REID / NE

DIGITAL TV

Situational Awareness from **Collaborative Positioning**

Satellite positioning:

- Robust multi-GNSS for positioning and timing • (GPS, Galileo, Glonass, BeiDou)
- GNSS interference detection & mitigation
- Precise point positioning (PPP) •

Non-GNSS and cooperative positioning

- Camera (light/Thermal/IR) •
- Ultra-Wide-Band and other RF signals
- Lidar •
- Inertial sensors (e.g., for pedestrian navigation •

Collaborative augmented navigation from terrestrial ranging (with sensors) and exchange of information (situational awareness): improved accuracy in challenging conditions

SENSORS

