GNSS and Time Metrology: Report from the CCTF Working Group on GNSS

Pascale Defraigne, Chair, Royal Observatory of Belgium

Current use of GNSS for UTC

- Calibration available since June 2020
- Use in UTC in test phase

- BeiDou : transition from BDS-2 to BDS-3 (different signals and frequencies)
 - only a few receivers get the BeiDou 3 signals
 - Absolute calibration for BDS-3 just started

Topics

- Calibration of GNSS equipment
- Time transfer with new GNSS
- Update on Circular T, Section 4
 (UTC-Broadcast_UTC_{GNSS}), to include all GNSS, with uncertainties
- Task Group on traceability to UTC from GNSS Measurements

Hardware delay calibration

Calibration scheme

Calibration trip

Calibration for GNSS hardware delays

G1 calibration trips:

Since 1001-2018 all of them include Galileo

	Ensemble	Nr	DIDP1	DIDP2	DIDC1	DIDP3
Excellent stability on GPS:	APMP (2018 – 2016) Ave	9	-0.1	-0.1	-0.2	-0.1
	EURAMET (2018 – 2016) Ave	9	0.1	0.0	0.1	0.2
	SIM (2018 – 2016) Ave	5	0.0	0.2	0.2	-0.2

Stability of G2 calibration results

G2 calibration status – June 2021

Age of last calibration

Progress in absolute calibration

Recent absolute calibrations agree within (peak-to-peak)

- 4 ns for GPS
- 2.5 ns for Galileo

Time transfer with new GNSS

Several studies carried out.

The conclusions converge:

- BeiDou-3 (B1C&B2a) provides similar performances as GPS
- Galileo code measurements are less noisy, and provide short-term stability typically better than GPS P3, but not always at $\tau \sim 0.25$ day

10¹ 10 ------ BDS-2(B1I&B2I) AV BDS-2(B1I&B2I) AV BDS-3(B1I&B3I) AV BDS-2(B1I&B3I) AV BDS-3(B11&B31) AV BDS-3(B1C&B2a) AV GPS(L1&L2) AV GPS(L1&L2) AV - GAL(E1&E5a) AV GAL(E1&E5a) AV 1DEV (ns) 10° (IIS) 10 10 10^{2} 10^{3} 10^{3} 10^{5} 10^{6} 10^{2} 10⁵ 104 10^{6} 10⁴ Averaging time (τ) Averaging time (t)

UTC(NTSC)-UTC(PTB

Guang et al 2020 Metrologia 57 065023

UTC(NTSC)-UTC(TP

→ Introduction of Galileo links in the computation of UTC, as backup to GPSPPP (~20 links in 12/2020)

Current situation :

- Only GPS and GLONASS

 $[UTC-UTC(USNO)_GPS] = CO', [TAI-UTC(USNO)_GPS] = 37 s + CO'$ $[UTC-UTC(SU)_GLONASS] = C1', [TAI-UTC(SU)_GLONASS] = 37 s + C1'$

- No specified uncertainty

Revise section 4 for Circular T

Naming Convention : "UTC" \rightarrow Broadcast_UTC_{XXX} (xxx= BDS GAL GLO GPS) **Pivot UTC(k)**

 $UTC - Broadcast_UTC_{XXX}$

= [UTC(k) – Broadcast_UTC_{XXX}]_{GNSS} – [UTC(k) – UTC]_{circular T}

G1 laboratories

- laboratories regularly calibrated and monitored by the BIPM,
- directly calibrated differentially against an absolutely calibrated station
- Geographically distributed over the world

NIST OP NIM NICT

Uncertainties

Uncertainties on UTC-Broadcast_UTC_{GNSS}

1. GNSSTIME – Broadcast_UTC_{GNSS} from different satellites

- 2. The uncertainties in the solution UTC(k)-GNSST due to multipath, and satellite clocks and orbits in the navigation messages.
- 3. Receiver calibration
- 4. Uncertainty on UTC-UTC(k) for the pivot UTC(k)
- 5. Differences between single-frequency and dual-frequency solutions.

+3.0 ns

2.6 ns

GPST – Broadcast UTC_{GPS}

Final uncertainty Budget:

	BeiDou	Galileo	GLONASS	GPS
Calibration	2.6	2.4	3.8	2.6
Broadcast value dispersion	3.0	0.5	1.7	1.3
Code noise and multipath	1.5	0.7	3.5	0.9
UTC-UTC(k) pivot	2.2	2.2	2.2	2.2
Total	4.8 ns	3.4 ns	5.9 ns	3.7 ns

Task Force on Traceability to UTC using GNSS measurements

CCTF survey \rightarrow some questions on the traceability to UTC using GNSS

Answers : from the UTC(k) laboratories + stakeholders (telecom, IT, Science, TF equipment manufacturers, standardization bodies, ...)

Observations from the answers received

The term "traceability" is used with different connotation in the various user groups. often ignoring the definition of (metrological) traceability in the Vocabulaire International de Metrologie (VIM).

- > Traceability and accuracy are sometimes not clearly distinguished.
- GNSS signals are employed for getting a reference for frequency, for epoch, for time-of-day, with quite different accuracy requirements.

Task Force on Traceability to UTC using GNSS measurements

Final Goals :

 Produce unified guidelines on how to get traceability to a realization of UTC through GNSS measurements

- Different options are on the table,
- Work in progress
- Disseminate the information to the end user, via e.g. RMOs, ICG, GNSS providers, GNSS stakeholders

Thank You

Pascale Defraigne, <u>p.defraigne@oma.be</u>

- Gérard Petit (BIPM)
- Andreas Bauch (PTB)
- Giancarlo Cerretto (INRIM)
- Michael Coleman (U.S. NRL)
- Jérôme Delporte (CNES)
- Héctor Esteban (ROA)
- Johann Furthner (DLR)
- Marina Gertsvolf (NRC)
- James Hanssen (USNO)
- Ryuichi Ichikawa (NICT)
- Artem Karaush (VNIIFTRI)
- Paul Koppang (USNO)
- Alexander Kuna (UFE)
- Judah Levine (NIST)
- Zhiqiang Yang (NIM)
- Shinn-Yan Lin (TL)
- Andrey Naumov (VNIIFTRI)
- Jerzy Nawrocki (AOS)
- Bijunath Patla (NIST)
- Daniele Rovera (LNE-SYRTE)
- Pierre Uhrich (LNE-SYRTE)
- Pierre Waller (ESA)
- Michael Wouters (NMIA)
- Wenjun Wu (NTSC)