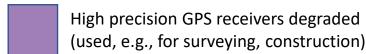

DOT PNT Update

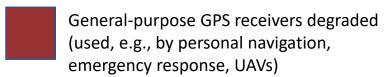
Civil GPS Service Interface Committee

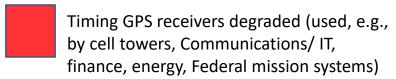
September 22, 2020

2019 Federal Radionavigation Plan

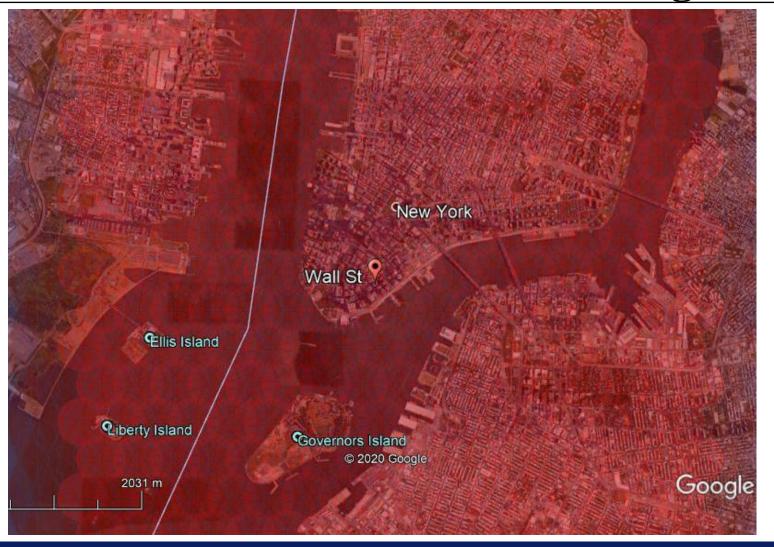
- GPS Adjacent Band Compatibility Results
- Termination of Nationwide Differential GPS (NDGPS)
- PNT Resiliency
 - Mitigation of Disruptions to GPS
 - Backup/Complementary PNT (NDAA Language)
 - Interference Detection
 - DHS Best Practices

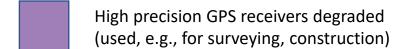


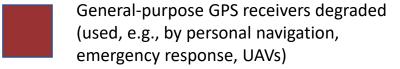

https://www.navcen.uscg.gov/pdf/FederalRadioNavigationPlan2019.pdf


Effect On GPS of One Ligado Base Station (1 dB) Based on DOT ABC Testing

 9.8 dBW base station placed in Lower Manhattan






^{*} For illustration only.

Effect On GPS of Many Ligado Base Stations (1 dB) Based on DOT ABC Testing

- 9.8 dBW base station separated by 433 m in hexagonal grid*
 - Blanketed Impact for All Receiver Categories

Timing GPS receivers degraded (used, e.g., by cell towers, Communications/ IT, finance, energy, Federal mission systems)

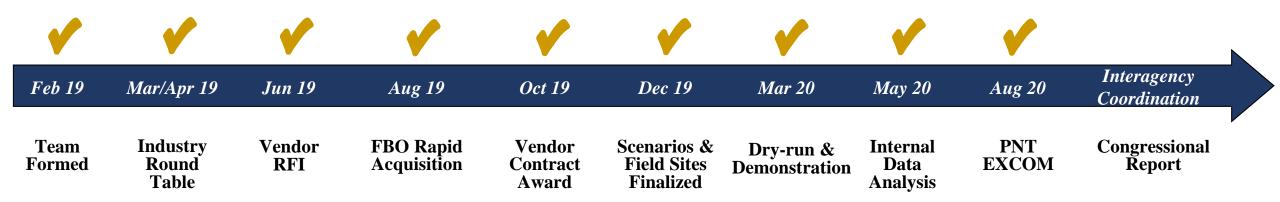
^{*} For illustration only.

GPS Adjacent Band Compatibility Assessment: Maximum Tolerable Power Level for GPS/GNSS Receivers at 1530 MHz

Deployment	Stand off distance (m)	Max Tolerable EIRP (dBW)				
		GLN	HPR	TIM	CEL	
Macro Urban	10	-31.0	-41.9	-20.6	10.9	
	100	-11.0	-21.9	-0.6	31	
Micro Urban	10	-29.8	-41.2	-20.1	10.7	
	100	-9.8	-21.1	-0.1	30.8	

Deployment	Stand off distance (m)	Max Tolerable EIRP			
		GLN	HPR	TIM	CEL
Macro Urban	10	0.8 mW	64 μW	8.7 mW	12.3 W
	100	79.4 mW	6.5 mW	0.9 W	1.26 kW
Micro Urban	10	1 mW	76 μW	9.8 mW	11.7 W
	100	104 mW	7.8 mW	1 W	1.2 kW

At proposed Ligado transmitter spacing, power must be reduced from 10 Watts to about one milliwatt (factor of 10,000) to protect all existing receivers


Summary of DOT GPS Adjacent Band Concerns

- The DOT GPS Adjacent Band Compatibility (ABC) test results clearly demonstrate there will be widespread disruption to GPS receivers.
- ❖ DOT serves as the Civil Lead for GPS and is concerned about the <u>millions</u> of receivers that will experience interference
 - The majority of civil GPS receivers are not U.S. Government devices and will not qualify for repair or replacement paid for by Ligado.
- FCC should thoroughly assess and account for the economic costs and burdens that will result.
 - Many GPS/GNSS receivers are hermetically sealed so it is not possible to retrofit them with new antennas.
 - Furthermore, many receivers are integrated into end-user applications making adversely affected GPS users unable to retrofit or replace their GPS receivers.

DOT PNT Research for Highly Automated Systems

- PNT for Automated Vehicles (AV): ITS Joint Program Office
 - 1. AV use cases / scenarios
 - 2. Determine PNT requirements for AV operations
 - 3. Assess GNSS and other candidate sensor technologies
 - 4. Analyze PNT performance of individual sensors
 - 5. Determine navigation performance enhancements achieved by sensor fusion
- DOT University Transportation Center: Highly Automated Transportation System Research
 - Awarded to consortium led by The Ohio State University (with UC Irvine, UT Austin, and University of Cincinnati): Center for Automated Vehicles Research with Multimodal AssurEd Navigation (CARMEN)
 - Assess PNT threat scenarios and risks to highly automated transportation systems
 - Standards, Guidelines, and Best-practices for cyber-resilient PNT systems
- OST-R Highly Automated System Safety Center of Excellence

FY18 NDAA GPS Backup Demonstration Status

- Awarded 11 PNT vendor demonstration contracts on rapid acquisition purchase orders
- Executed two acquisitions, three field campaigns, technology demonstrations, and preparing PNT performance analysis report