

GPS/Galileo Time Transfer with Absolutely Calibrated Receivers

Pierre WALLER, Roberto PRIETO-CERDEIRA, Jörg HAHN

60th CGSIC - Timing Subcommittee 21/09/2020

ESA UNCLASSIFIED - For Official Use

European Space Agency

Introduction

- GPS is the de-facto standard for global access to precise time and time transfer
- Other GNSS are now in the air
- Multi-constellation / multi-frequency receivers are available
 - \rightarrow improved robustness
 - \rightarrow improved performance
- But: inter-system biases need to be estimated accurately
 - → HW delays in the receiver chain (Antenna, Receiver...)
- Absolute calibration method was developed for the accurate estimation of HW delays
- Several test campaigns were executed and consistency of results accurately checked

ESA UNCLASSIFIED - For Official Use

Absolute Calibration

- Accuracy at sub-ns level
- Hardware delays are estimated using simulated signals
 - → Antenna: anechoic chamber + VNA
 - → Antenna cable: VNA
 - → Receiver: GNSS simulator + scope + SDR correlator + PR differences

E. Garbin, P. Defraigne, P. Krystek, R. Piriz, B. Bertrand, P. Waller, "Absolute calibration of GNSS timing stations and its applicability to real signals" 2019, Metrologia 56 015010

ESA UNCLASSIFIED - For Official Use

Absolute Calibration Results

Antenna

- Several test campaigns executed at ESTEC
- 1 antenna also measured independently by CNES, using smaller anechoic chamber

	CNES-ESA (ns)						
	delay difference	combined uncertainty (1 σ)					
L1C	0.28	0.66					
L1P	0.24	0.68					
L2P	0.32	0.54					
L5	-0.51	0.54					
E1	0.23	0.58					
E5a	-0.56	0.55					
E5b	0.19	0.54					

ESA UNCLASSIFIED - For Official Use

Absolute Calibration Results

٠

Several test campaigns executed at ESTEC on several types of timing receivers

4

Absolute Calibration Results

Receivers

• One receiver also tested independently by CNES

	CNES-ESA (ns)					
	delay difference	combined uncertainty (1 σ)				
L1C	-0.71	0.70				
L1P	-0.52	0.70				
L2P	-1.01	0.35				
L5	-1.09	0.42				
E1	-0.38	0.51				
E5a	-1.1	0.29				

ESA UNCLASSIFIED - For Official Use

CGSIC Timing Subcommittee 2020 | 21/09/2020 | Slide 6

+

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Absolute Calibration

- Absolutely calibrated chains are operating continuously at ESA/ESTEC
- Two full chains were calibrated for the BIPM using the ESA/ESTEC procedure:

		Anteni	1a APC	Ca	ble	Rece	eiver	TO	ΓAL
	GNSS Signal	Value	Uncer.	Value	Uncer.	Value	Uncer.	Value	Uncer.
s	L1 C/A	20.89	0.54	140.75	0.26	9.48	0.74	171.12	0.95
	L1 P	20.88	0.53	140.75	0.26	9.38	0.52	171.01	0.79
B	L2 P	17.93	0.43	140.76	0.25	10.28	0.53	168.97	0.73
	L5	20.22	0.53	140.76	0.25	10.66	0.46	171.64	0.74
	E1 BC	20.90	0.54	140.75	0.26	9.75	0.47	171.40	0.76
Galileo	E6 BC	20.65	0.48	140.76	0.25	7.99	0.55	169.40	0.77
	E5a	20.30	0.51	140.76	0.25	10.58	0.48	171.64	0.74
	E5b	17.75	0.49	140.76	0.25	6.89	0.79	165.40	0.96
	E5 (AltBOC)	18.06	0.41	140.76	0.25	8.59	0.48	167.41	0.68
	G1 C (centre)	21.41	0.53	140.75	0.26	6.26	0.78	168.42	0.98
0	G1 P (centre)	21.40	0.53	140.75	0.26	6.90	0.55	169.05	0.81
B	G2 C (centre)	17.23	0.55	140.76	0.25	11.38	1.34	169.37	1.47
	G2 P (centre)	17.23	0.55	140.76	0.25	10.29	0.60	168.28	0.85
0	B1	19.93	0.44	140.75	0.26	5.95	0.62	166.63	0.80
B	B2	17.85	0.51	140.76	0.25	6.81	0.59	165.42	0.82
CC	SSIELED For Official Lico								

ESA UNCLASSIFIED - For Official Use

NISG	
------	--

		Antenna APC		Cable		Receiver		TOTAL	
	GNSS Signal	Value	Uncer.	Value	Uncer.	Value	Uncer.	Value	Uncer.
s	L1 C/A	19.98	0.44	311.28	0.33	11.70	0.64	342.96	0.84
	L1 P	20.01	0.43	311.28	0.33	11.22	0.49	342.51	0.73
5	L2 P	18.36	0.43	311.28	0.31	11.20	0.50	340.84	0.73
	L5	20.74	0.46	311.28	0.31	11.96	0.47	343.98	0.73
	E1 BC	19.98	0.44	311.28	0.33	11.86	0.45	343.12	0.71
0	E6 BC	19.38	0.45	311.28	0.31	9.83	0.57	340.49	0.79
Galile	E5a	20.78	0.44	311.28	0.31	11.87	0.47	343.93	0.71
	E5b	19.18	0.46	311.28	0.31	7.68	0.75	338.14	0.93
	E5 (AltBOC)	19.97	0.42	311.28	0.31	9.56	0.46	340.81	0.70
	G1 C (centre)	22.18	0.46	311.28	0.33	5.32	0.91	338.78	1.07
0	G1 P (centre)	22.19	0.46	311.28	0.33	6.23	0.78	339.70	0.96
5	G2 C (centre)	18.32	0.59	311.28	0.31	12.71	1.46	342.31	1.60
	G2 P (centre)	18.31	0.59	311.28	0.31	11.24	0.92	340.83	1.14
_	B1	19.67	0.44	311.28	0.33	4.51	0.61	335.46	0.82
BI	B2	19.13	0.48	311.28	0.31	7.63	0.56	338.04	0.80
	CCSIC Timing Subcommittee 2020								

CGSIC Timing Subcommittee 2020 | 21/09/2020 | Slide 7

The set = + 11 = ≦ = 11 11 = = 2 He was a set = 10 He was

- Operation of multiple absolutely calibrated receivers in common clock (common antenna)
- Compare geometrically-corrected pseudorange difference with absolute delay difference (including antenna, antenna cable and REFDLY)
- Focused on GPS and Galileo

- Local common-clock measurements
- Absolute delay difference pseudorange difference:

GNSS Signal	PolaRx5 – PolaRx5 common antenna (ns)	PolaRx5 – PolaRx5 different antennas (ns)	PolaRx5 – GTR51 common antenna (ns)
L1C	0.11	0.21	1.45
L1P	0.24	-0.16	-0.9
L2P	0.12	-0.34	-0.96
L5Q	0.14	-0.77	-1.34
E1C	-0.08	0.17	0.34
E5Q	0.12	-0.68	-0.62
E7Q	-0.05	-0.98	
E8Q	0.11	-0.59	
E6C	0.03	-0.35	

ESA UNCLASSIFIED - For Official Use

CGSIC Timing Subcommittee 2020 | 21/09/2020 | Slide 9

+

Remote common-clock measurements, connected via White Rabbit link:

- Remote common-clock measurements, connected via White Rabbit link
- Absolute delay difference pseudorange difference:

	WR - CGGTTS				
	mean (ns)	stdev (ns)			
GPS	2.17	0.57			
Galileo	2.35	0.44			
Beidou	-1.08	1.82			
Glonass	2.96	3.06			

CGSIC Timing Subcommittee 2020 | 21/09/2020 | Slide 11

ESA UNCLASSIFIED - For Official Use

Consistency with existing GPS standard

(courtesy: BIPM, G.Petit, P.Defraigne)

ESA UNCLASSIFIED - For Official Use

CGSIC Timing Subcommittee 2020 | 21/09/2020 | Slide 12

•

= ■ ▶ = = + ■ + ■ ≡ = 1 ■ ■ = = = = ₩ **■** ■ ■ **■** = **■** ₩ **■**

In summary

- A simple and accurate procedure for calibration of HW delays in GNSS receiver chains has been developed, executed and validated
- Delays with simulated signals:
 - Sub- to ns internal consistency
 - 1-2ns consistency with independent method (CNES)
- Comparison with real signals:
 - Sub- to ns consistency
- Comparison with existing GPS standard:
 - Few ns consistency

ESA UNCLASSIFIED - For Official Use

Outcomes

- On the basis of these results (and others), the BIPM CCTF Working Group on GNSS Time Transfer has decided to use the absolute calibration of the BP21 chain as standard for Galileo
- Standard already transferred to G1 laboratories in EURAMET and SIM, on-going for the other areas
- Future G1/G2 trips will include GPS + Galileo
- Note: a G1/G2 trip took place in ESTEC in July 2020. Comparison with absolutely operated chains confirm the reported level of consistency

ESA UNCLASSIFIED - For Official Use

· = ■ ► = = + ■ + ■ ≡ = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Thank you

Acknowledgements: ESA's AKAL Project team (GMV, ORB) Raphael Valceschini CNES

ESA UNCLASSIFIED - For Official Use

European Space Agency