

Report from the Nordic Countries

by Anna Jensen, KTH – Royal Institute of Technology with input from Dan Norin, Kjell Arne Aarmo, Sarang Thombre and Thorarinn Sigurdsson

2020-09-19

Report from the Nordic Countries

Outline

- Cooperation and trends in the Nordic countries
- Activities and status in Norway
- Activities and status in Finland
- Activities and status in Iceland
- Activities and status in Denmark
- Activities and status in Sweden
- Concluding remarks and acknowledgements

Cooperation between the Nordic countries

- Long tradition for cooperation between the Nordic countries
 - Since the age of the Vikings (or even before)
- Many cultural similarities (and differences)
 between the countries

- Nordic cooperation often includes also the Baltic countries; Estonia, Latvia, Lithuania
- Several formal bodies for cooperation, for instance:
 - Nordic Institute of Navigation and Nordic Geodetic Commission

Photo by Werner Karrasch the Viking Ship Museum in Roskilde

Trends in the Nordic countries

- Number of continuously operating reference stations (CORS) increasing in all countries
- Number of users of high-accuracy GNSS positioning services increasing, especially within building & construction and farming
- Strong development towards high-accuracy use of GNSS in "new" fields such as autonomous vehicles and mass-market applications (mobile phones etc.)
- Many GNSS-related research and development (R&D) activities

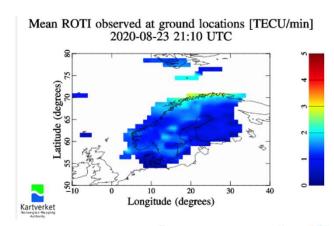


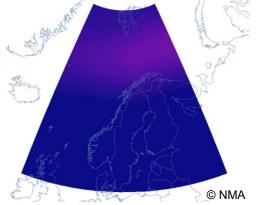
Activities and status in Norway

 Norwegian Mapping Authority (NMA) CORS network:

SATREF

- Approx. 270 stations owned by the government capable of tracking GPS, GLONASS, Galileo and BeiDou
- Both public (NMA's CPOS) and private RTK-services (from Hexagon, Topcon, Trimble, Sapcorda) use NMA's reference stations

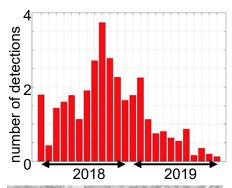


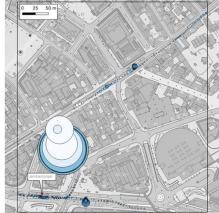


Activities and status in Norway

A few examples of projects and activities:

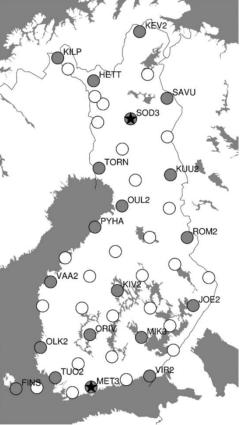
- Monitoring of space weather (ionosphere) carried out by NMA
- Two stations (Stavanger, Ny Ålesund) for monitoring radio noise from the sun. Data available in real time, and contributes to the international network e-Callisto
- Joint project of NMA, CNES, ONERA and Norwegian Space Agency to predict the ionosphere at northern latitudes: HAPEE (High lAtitude scintillation Positioning Error Estimator). A beta implementation is around the corner





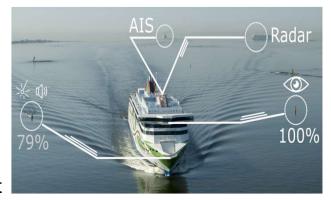
Activities and status in Norway

- NMA carry out performance monitoring of:
 - Galileo
 - > GRC MS Galileo Reference Centre member state support
 - EGNOS
 - > SPMS Service Performance Monitoring Support
- Permanent monitor station to monitor radio frequency interference along a Norwegian main road
 - → presentation at ION GNSS+ 2020 session F4a
- Performance monitoring of Galileo in urban areas using a tram in Oslo
 - → presentation of results at ENC 2020


Activities and status in Finland

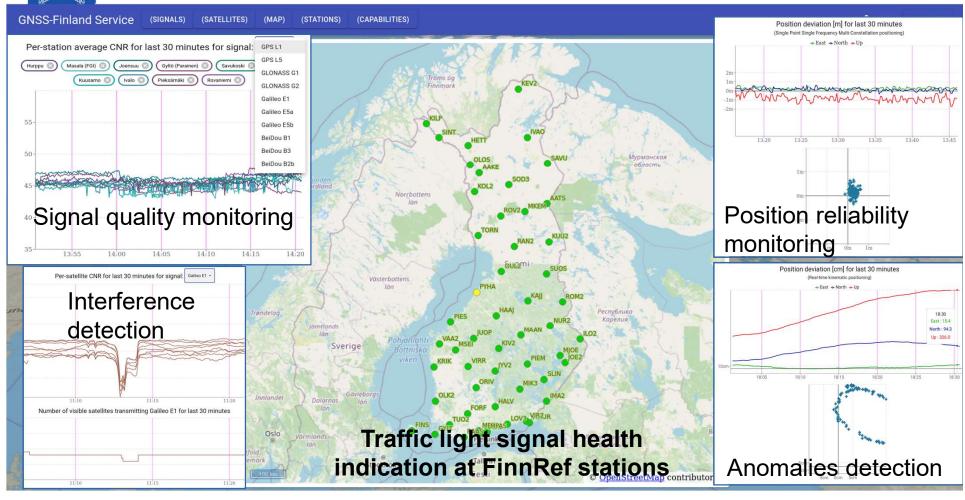
Continuously operating reference stations (CORS):

- FinnRef network being densified
- Network RTK services offered by private companies

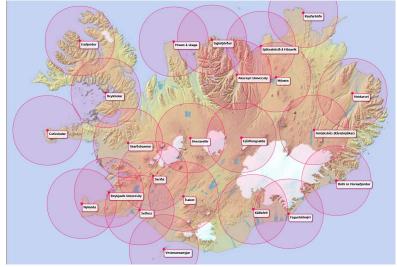

Images from National Land Survey, Finland

Activities and status in Finland

- Maritime AI-NAV (ESA), ENHANCE (ESA)
 - Sensor integration and AI machine learning for autonomous maritime situational awareness
 - Twitter: @ai_maritime, www.maritimeai.org/
- PrestigeFin (Finnish Transport Infra. Agency)
 - Review of GNSS augmentation resources available in Finnish waterways for improving accuracy of vessel height (sea-floor clearance) estimation
 - https://prestigefin.org/
- GEARS (GSA)
 - Designing a resilient Galileo Timing receiver for critical infrastructures
 - www.gears-gsa-project.eu
- RAGE (Business Finland)
 - Automatic mineral detection based on indoor positioning, Al, and hyperspectral sensing
 - www.FGI.fi>>Dept. of Navi>>RAGE



GNSS Signal Quality Monitoring



Activities and status in Iceland

National Land Survey of Iceland, major use of GNSS:

 IceCORS, 25 stations established by the government. Of these:

- 2 IGS stations
- 2 EPN stations
- Used for:
 - Geodesy and geodynamic applications
 - Monitoring and maintains the semidynamic datum in Iceland
 - RTK positioning free of charge

Network RTK services offered by private companies: Trimble and Topcon

Activities and status in Iceland

University of Iceland, major use of GNSS:

- Crustal deformation research
 - Volcanoes
 - Earthquakes
 - Plate motion
 - Glacio-isostatic-adjustment
 - Geothermal production response
 - Earthquake triggering
 - Landslides
 - GNSS seismometry: using GNSS to measure seismic waves from large earthquakes
- · Glacial applications
 - Subglacial lake level and flood research
 - Ice motion
- Mapping purposes
 - Faults and fissures, lava flow outlines, sample locations
- Timing: seismometer time-tags
- And of course for navigation ©

Activities and status in Iceland

Icelandic Met Office, major use of GNSS:

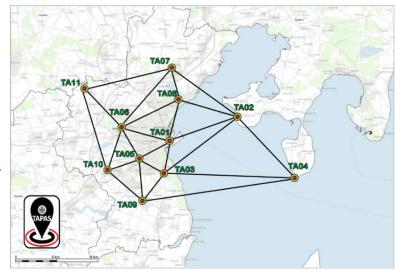
- Volcano monitoring
- Seismic monitoring
- Tracking glacial movements, especially for monitoring the onset of floods from subglacial lakes that form at geothermal areas beneath glaciers
- Monitoring of unstable slopes
- Meteorological applications

13

Activities and status in Denmark

CORS stations:

- Stations for geodetic and geodynamic applications operated by the government
- Stations for high-accuracy real-time kinematic (RTK) positioning services operated by private companies i.e.
 Trimble, Leica and Topcon affiliates


- GNET: Greenland GPS Network
 - Established for geodesy and geodynamics, increasing use for other applications

Activities and status in Denmark

A few examples of projects and activities:

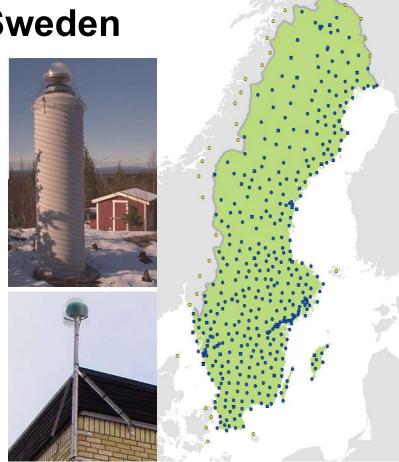
- TAPAS: Testbed in Aarhus for Precision Positioning and Autonomous Systems
 - GNSS-based infrastructure for R&D in autonomy and smart city applications
 - Presentation ION GNSS+ 2020 session D4
- DANGO: Danish National Galileo Overlay
 - R&D project on coordinate transformations and monitoring of Galileo performance

GNSS-based space weather monitoring in Greenland, several R&D activities

Activities and status in Denmark

- Galileo Forum established by the Danish government for information on GNSS. Both public and private organisations participate
- Analysis by London Economics in 2019 revealed:
 23% of Danish GDP is created in businesses dependent on GNSS
- Open and free use of data from the GNSS stations in Denmark and Greenland (GNET) which are owned by the Danish government
- Many R&D activities regarding GNSS applications within autonomy, digitalisation, smart city, logistics and shipping

2020-09-19 Report from the Nordic Countries 16



Activities and status in Sweden

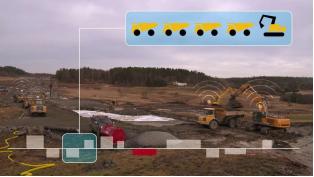
CORS stations:

- 454 SWEPOS stations
 - Operated by Lantmäteriet
- SWEPOS Network RTK, service with 6200 paying subscriptions
 - Use of Galileo since February 2018
 - The major commercial network RTK services are also available, using SWEPOS stations (common geodetic infrastructure)

Images from: Lantmäteriet

SWEPOS

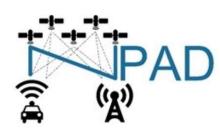
Activities and status in Sweden


A few examples of projects and activities:

- SWEPOS project adaption
 - Supports construction of new infrastructure through a dense GNSS station network
- Stomnät i Luften 2.0 (Reference Network in the Air)
 - Funded by Swedish Transport Administration
 - R&D project on high-accuracy positioning in construction

Images from:

Lantmäteriet and the Swedish Transport Administration



Activities and status in Sweden

- Prepare Ships
 - Funded by Horizon 2020
 - Using EGNSS, to allow vessels to navigate safely in close proximity to each other and to stationary objects, and creating structure for autonomous maritime navigation

- Network RTK Positioning for automated driving (NPAD)
 - Funded by Vinnova
 - Objective to enable network RTK positioning for automated vehicles or other mobile platforms on land by applying the standard developed by 3GPP and adapting the existing SWEPOS infrastructure

Concluding remarks

- Good cooperation as well as exchange of experiences around GNSS between the Nordic countries
- A lot of GNSS-related research and development activities in the Nordic countries
 - At universities, public organisations and private companies
- Much focus on high-accuracy and increased robustness in applications
- More information in the White paper: "Future Positioning Services", written by Nordic Geodetic Commission:
 - http://www.nordicgeodeticcommission.com/wpcontent/uploads/2019/12/NKG-White-Paper-on-Future-Positioning-Services-2019.pdf

Acknowledgements

This presentation was prepared by:

- Anna Jensen, KTH Royal Institute of Technology, Sweden (abjensen@kth.se) and DTU Space, National Space Institute, Denmark
 - https://www.kth.se/en and https://www.space.dtu.dk/english
- Dan Norin, Lantmäteriet, Sweden
 - <u>https://www.lantmateriet.se/en/</u>
- Kjell Arne Aarmo, Norwegian Space Centre, Norway
 - <u>https://www.romsenter.no/eng/</u>
- Sarang Thombre, Finnish Geospatial Research Institute, Finland
 - https://www.maanmittauslaitos.fi/en/research
- Thorarinn Sigurdsson, The National Land Survey of Iceland, Iceland
 - <u>https://www.lmi.is/en/</u>