DOT PNT Update:

Complementary PNT Demo

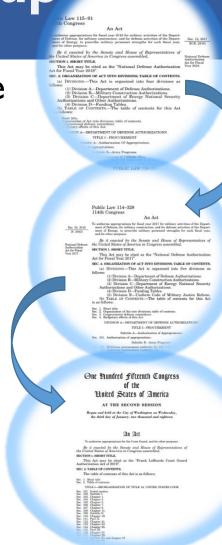
GPS Civil Monitoring Performance Spec

Dr Andrew Hansen

Civil GPS Signal Interface Committee 21-22 Sep 2020

Advancing transportation innovation for the public good

DOT PNT Update (Cont.)


Overview

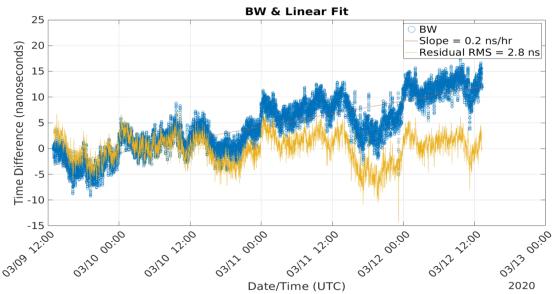
- Complementary PNT Technology Demonstration
- GPS Civil Monitoring Performance Specification, 3rd Ed.

Congressional Motivation on GPS Backup

- Sequential Legislation on Backup/Complementary PNT Service
 - Needs established for PNT: FY17 NDAA Section 1618
 - <u>Demonstrate</u> PNT technologies: **FY18 NDAA Section 1606**
 - <u>Procure</u> Complementary PNT system(s): **National Timing Resilience and Security Act of 2018**, places responsibility on DOT, no appropriation & two year timeline (HR 3409, Section 210)
- Volpe Center Completed PNT Technology Demonstration
 - NASA LaRC: two weeks, six vendors, eight scenarios, VIP <u>demo</u> day
 - JBCC: two weeks, five vendors, same eight scenarios + offset eLoran scenario (Wildwood LSU)
 - Government reference system based on GPS + atomic frequency standard

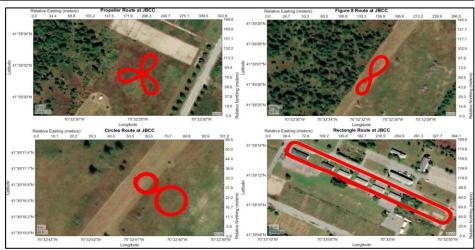
PNT Technology Vendor Participation

Vendor	PNI Technology		Demo site	nch Static Tuning Static O	utdoor fining static	ndoor Tirning	Basement References	ce Station Timings	Courdoor Holds	Outdoor Positioning Static	indoor Airborne
Echo Ridge LLC	LEO commercial S-band (2483.5 – 2500 MHz)	LaRC					N/A		Х		
Hellen Systems, LLC	eLoran terrestrial RF (90-110 kHz)	JBCC	Х			Х	X				
NextNav LLC	UHF terrestrial RF (920-928 MHz)	LaRC	Х	Х	Х	Х	N/A	Х	Х	Х	x
OPNT B.V.	fiber optic time service (white rabbit PTP)	LaRC	Х				N/A				
PhasorLab Inc.	802.11 terrestrial RF (2.4 GHz)	JBCC	Х	х	Х		N/A	Х	х		x
Satelles, Inc.	LEO commercial L-band (1616-1626.5 MHz)	JBCC	Х	Х	Х	Х	N/A		Х		
Serco Inc.	R-mode terrestrial RF (283.5-325 KHz)	JBCC					N/A	Х	х		
Seven Solutions S.L.	fiber optic time transfer (white rabbit PTP)	LaRC	Х				N/A				
Skyhook Wireless, Inc.	802.11 terrestrial RF (900 MHz, 2.4 GHz, & 5 GHz)	LaRC					N/A	Х	Х	Х	x
TRX Systems, Inc.	UWB & IMU map matching (3.1-5 GHz)	LaRC					N/A	Х	Х	Х	
UrsaNav Inc.	eLoran terrestrial RF (90-110 kHz)	JBCC	Х		Х	Х	Х				
GPS (stand-alone)	MEO government L-band (1575.42 and 1227.60 MHz)	All	Х	х			Х	Х	х		x




Government Host Platforms, 2D and 3D

Government Reference System Performance



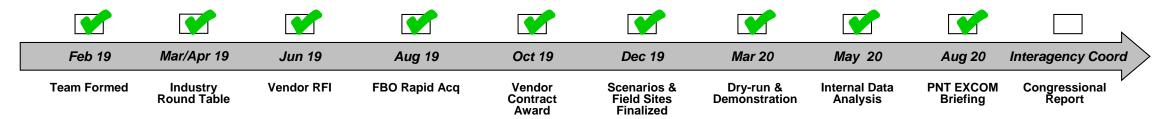
Example Dynamic Positioning Scenarios

Measures of Effectiveness (14): Capability Subset (9) – more quantitative

- I. Technical Readiness: System (TRL 6-9)
- 2. Technical Readiness User Equipment (TRL 6-9)
- 3. Timing and Positioning Accuracy (meters, nanoseconds)
 - Largest 95% bound across the runs in a scenario
- 4. Spectrum Protection (protected, owned, leased, shared)
- 5. Service Deployment Effort (low, medium, high)
- 6. Service Coverage per Infrastructure
 - Count, e.g. number of transmitters, per unit coverage area

- 7. Service Synchronization (UTC, cascade, self-synchronizing)
 - Timing: UTC, cascade, self-synch
- 8. PNT Signal Robustness (strong, weak)
 - Emitted power limits, propagation loss, environments
- 9. Service Resilience (fail-safe, -over, -soft, -hard)
 - System response to changing or off-nominal operating conditions

Measures of Effectiveness (14): Suitability Subset (5) – more qualitative


- PNT Distribution Mode (terrestrial RF, orbital RF, fiber, database)
 - Basic indicator/qualifier on information security
- II. Interoperability (high, low)
 - Common platform, in-band/out-of-band, layered components
 - Compatibility with GPS user equipment
- 12. PNT Information Security (low, medium, high)
 - Authentication, encryption, open
 - Broadcast, point-to-point, controlled access, monitoring
- 13. Time to Implement Service (short, medium, long)
 - Infrastructure, standards, equipage

- 14. System/Service Longevity (short, medium, long)
 - Operational life of infrastructure
 - Compatibility with other PNT services & standards
 - Spectrum policy stability

Summary FY18 NDAA PNT Demonstration

- Completed PNT technology demonstration
 - NASA LaRC: two weeks, six vendors, eight scenarios, VIP demo day
 - JBCC: two weeks, five vendors, same eight scenarios + offset eLoran scenario (Wildwood LSU)
 - Government reference system based on GPS + atomic frequency standard + data collection
- Draft report describes scenarios, reference system, PNT technologies, and data analysis
- Demonstration output products:
 - Technical report with PNT roadmap and technology measures of effectiveness
 - Support to PNT strategy and interagency coordination on Complementary PNT

GPS Civil Monitoring Performance Specification

- GPS CMPS 3rd Ed. (Aug 2020) published on GPS.GOV https://www.gps.gov/technical/ps/2020-civil-monitoring-performance-specification.pdf
 - Goal of the document is to itemize specifications for all US Government public GPS commitments
- Motivating event was publication of GPS SPS Performance Standard 5th Ed. (Apr 2020)
 https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf
- Additional events
 - GPS interface specifications, e.g. GPS IS 200, GPS IS 705, etc. have been updated multiple times
 - Detailed review of the CMPS 2nd Ed. exposed some ambiguous specifications
 - New understanding of verification needed to ensure each specification
 - Clarified interpretation of monitoring requirement for OCX contractor engagement
- Refined implementation of GPS annual reports on SPS PS from the GPS Enterprise

CMPS 3rd Ed. Changes from 2nd Ed. (2009)

- SPS PS Update (5th Ed., April 2020)
 - Multi-frequency combination of open signals (L1 C/A, L2C, L5)
 - New standards: Average Velocity, Constellation Average URE, Psat & Pconst
 - Changes to accuracy and availability standards (URE, UTCOE, Positioning)
 - Amended NANU notification standard (prior notification 95%)
- IS-GPS Updates
 - IS-GPS-200, -705, -800: timing accuracy
 - ICD-GPS-240: addition of SOF file
- Removal of untestable and cost-prohibitive requirements
- Proposed changes to monitoring detection/reporting times
- Numerous editorial changes

Questions?

Andrew Hansen

+1.617.494.6525

andrew.hansen@dot.gov

