

CGSIC International Information Subcommittee 21 September 2020

PNT Architecture and MarRINav

Mr. Dana A Goward, Mr. Jonathan Turner and Dr. Alan Grant

PNT Architecture

& MarRINav

Mr. Dana A. Goward

Safety Critical Systems

Failure or malfunction likely to cause

- Death or injury to person
- Significant loss of property/damage to equipment
- Environmental damage

Triple Modular Redundancy (TMR):

Voting \rightarrow (1) + (1) + (1) = (1)

Resilience \rightarrow f(p1, p2, p3) \approx .99999

National PNT Architecture

MarRINav

Layered PNT Architecture Construct

 Global
 Space-based, Ubiquitous, 3-Dimensional Position and Precise Time

 Regional
 Space-based or Terrestrial, Non-global (National/International) Coverage

 Local
 Space-based, Terrestrial, and/or Autonomous, Localized by design/performance

Integrated PNT for the Joint Force Integrated PNT Interface **Joint Force Missions** PNT Sources Standard(s) Engines USNO Master Clock/AMC Defense Regional Interface Clocks UTC(USNO) demized (M-Col **Open-System Architecture Initiatives** (PS as Software) A Flexible and Agile Resilient EGI **DoD PNT Enterprise** (Air Force) CONSAT Aslang (Tank Enabling SA and C2 COMPAT Airting (DCPS for ALL DoD Terrestrial (STOIC at or an **Missions and** PVT Data errentrial (LAAS1 or staint GPNTS Operations Inputs (Navy) Classified Sources ADD HING trial Comm Aiding (We Intertial Systems (NSMEMS) (DARPA MAPS/DAPS Clocks (Oscillators, AFS, CSAC ASPN (Army) Rola SONARL DAR Navwar Compliance Celevital Otar Catalog DoDI 4650.08 o toferenced imagery (Visible N Others (?) Scene Mapping Matchine

Figure 8 – Notional Capabilities-to-Applications Process

Modeling & Simulation, Testing

M&S Collaboration Initiative

Threat Assessment/

Gap Analysis

Strategy for the Department of Defense Positioning, Navigation, and Timing (PNT) Enterprise

Unclassified Version, Public Release 14 August 2019

Positioning, Navigation, & Timing (PNT) Multi-Level Resiliency Model **Example Systems** From Space: GNSS (GPS, Galileo, GLONASS, BeiDout + augmentations **Global Layer** Investrual eLocar, NDGPS, EGNOS, MSAS

Local Layer

newtal Lave

Terrestrial Pseudolites, iPost Locata, DME/VOR/D/CAN

Inertial, CSAC, Lidac, Radar, Sonar, Cold Atom

Phase 1 project overview

Mr. Jonathan Turner

Map utilised with the kind permission of www.marinetraffic.com

HMM Algeciras, currently the world's largest container ship (source: kentonline.co.uk)

🚟 GRAD

TAYLOR | AIREY

Figure 10: Scenario of linked Use Cases for maritime analysis.

Position, navigation and timing systems considered:

Global

- GNSS
- Satelles (STL), subject to confirmation of performance

Wide area

• eLoran

Local area

- VDES Ranging Mode (R-Mode)
- Radar Absolute Positioning
- LOCATA™

Onboard

- Traditional and/or inertial Dead Reckoning
- Multi-system receiver (MSR)

Detail on each system is available in MarRINav report D4

Requirement set (arbitrary numbers)	1	2	3	4	5	6
Accuracy (95%)	1000 m	100 m	100 m	10 m	10 m	10 m
Integrity Limit with 10 ⁻⁵ risk	2500 m	250 m	250 m	25 m	25 m	25 m
Distance from coast	Any	<100 km	Any	<10 km	<100 km	Any
GNSS	Yes	Yes	Yes	Yes	Yes	Yes
Differential eLoran	No	Yes	Note 1	Yes	Note 3	No
Differential eLoran with VDES R	No	Yes	Note 1	Yes	Note 3	No
eLoran	No	Yes	Note 1	No	No	No
eLoran with VDES R-mode	No	Yes	Note 1	No	No	No
MF, VDES or MF/VDES R-mode	No	Note 1	No	No	No	No
Coherent radar ranging with DR	No	No	No	Note 2	No	No
Dead Reckoning (DR) for 15 min	Yes	Yes	Yes	No	No	No
Dead Reckoning (DR) for 3 hours	Yes	No	No	No	No	No
DR + Star Tracker	Yes	No	No	No	No	No

- Note 1: Theoretically possible, but impractical to achieve this level of coverage.
- Note 2: Subject to maturity of the technology
- Note 3: Requirements are met within 30 km of the coast, but not in the 30-100 km range

Table 3: Comparison of selected PNT technologies with various user requirements.

Further information is available in MarRINav report D6

Proposed solution for UK CNI

- DR supported by Radar absolute positioning
- Port operations supported by Locata[™]
- Resilient PNT & I is achieved through a system-of-systems approach

Staged Project Approach

Phase 1 Research, Design, Simulate

> Phase 2 Demonstrate and Implement Build a 'system of systems' system by system

> > Phase 3 Explore new sectors and geographies

More information and detail at

www.marrinav.com www.navisp.esa.int

Phase 1 project highlights

Dr. Alan Grant