

Dr. Jun Shen¹ and Dr. Changjiang Geng²

1 International Cooperation Center, China Satellite Navigation Office

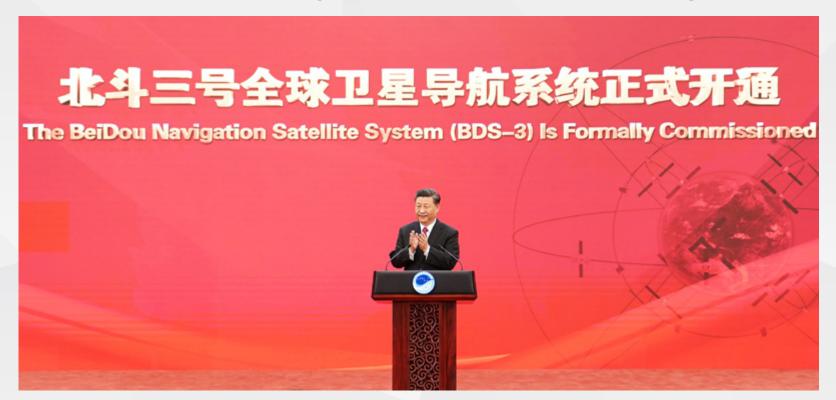
2 Test and Assessment Research Center, China Satellite Navigation Office

ION GNSS+ Virtual 2020 / CGSIC Meeting September 21-25, 2020

Application Development

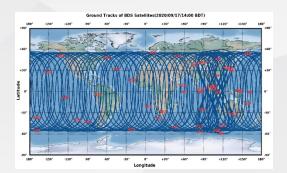
International Cooperation

BDS Enters A Global Era


- The BDS-3 space constellation, consisting of 30 satellites (24MEOs+3GEOs+3IGSOs), were successfully deployed between November 5, 2017 and June 23, 2020.
- Many state of art technologies, such as more reliable atomic clocks, inter-satellite links, and new navigation signals are added.
- In addition to the fundamental PNT services, new services are implemented.
- 🌶 BDS enters a global era.

The BDS-3 GEO-3 satellite was successfully launched from XSLC on board a LM-3B rocket.

BDS-3 Was Formally Commissioned on July 31, 2020

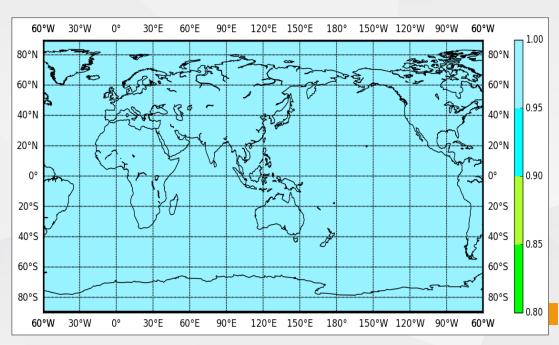


The BDS Operational Satellites

- There are 15 operational BDS-2 satellites (5GEOs + 7IGSOs + 3MEOs, with open service navigation signals B1I/B2I/B3I, using PRN from 1 to 15, at the moment.
- There are 27 operational BDS-3 non-GEO satellites (24 MEOs + 3IGSOs) providing open service for global users with signals B1C/B2a/B1I/B3I/B2b, using PRN from 19 to 61.
- There are 3 BDS-3 GEO satellites providing open service for global users with signals B1I/B3I, BDSBAS-B1C/BDSBAS-B2a and B2b-PPP.

PRN	IGS-SVN	NORADID	SVN	SatelliteType	ClockType	Manuf	LaunchDate	SatStatus
01	C020	44231	GEO-8	BDS-2	Rubidium	CASC	2019-05-17	Operational
02	C016	38953	GEO-6	BDS-2	Rubidium	CASC	2012-10-25	Operational
03	C018	41586	GEO-7	BDS-2	Rubidium	CASC	2016-06-12	Operational
04	C006	37210	GE0-4	BDS-2	Rubidium	CASC	2010-11-01	Operational
05	C011	38091	GEO-5	BDS-2	Rubidium	CASC	2012-02-25	Operational
06	C005	36828	IGSO-1	BDS-2	Rubidium	CASC	2010-08-01	Operational
07	C007	37256	IGSO-2	BDS-2	Rubidium	CASC	2010-12-18	Operational
08	C008	37384	IGSO-3	BDS-2	Rubidium	CASC	2011-04-10	Operational
09	C009	37763	IGSO-4	BDS-2	Rubidium	CASC	2011-07-27	Operational
10	C010	37948	IGSO-5	BDS-2	Rubidium	CASC	2011-12-02	Operational
11	C012	38250	MEO-3	BDS-2	Rubidium	CASC	2012-04-30	Operational
12	C013	38251	MEO-4	BDS-2	Rubidium	CASC	2012-04-30	Operational
13	C017	41434	IGSO-6	BDS-2	Rubidium	CASC	2016-03-30	Operational
14	C015	38775	MEO-6	BDS-2	Rubidium	CASC	2012-09-19	Operational
16	C019	43539	IGSO-7	BDS-2	Rubidium	CASC	2018-07-10	Operational

BDS-2 Satellites

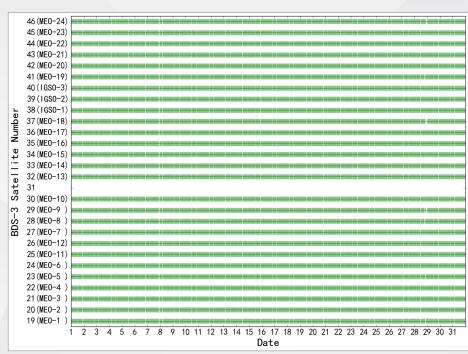

www.csno-tarc.cn

PRN	IGS-SVN	NORADID	SVN	SatelliteType	ClockType	Manuf	LaunchDate	SatStatus
19	C201	43001	MEO-1	BDS-3	Rubidium	CASC	2017-11-05	Operational
20	C202	43002	MEO-2	BDS-3	Rubidium	CASC	2017-11-05	Operationa
21	C206	43208	MEO-3	BDS-3	Rubidium	CASC	2018-02-12	Operationa
22	C205	43207	MEO-4	BDS-3	Rubidium	CASC	2018-02-12	Operationa
23	C209	43581	MEO-5	BDS-3	Rubidium	CASC	2018-07-29	Operationa
24	C210	43582	MEO-6	BDS-3	Rubidium	CASC	2018-07-29	Operationa
25	C212	43603	MEO-11	BDS-3	Hydrogen	SECM	2018-08-25	Operationa
26	C211	43602	MEO-12	BDS-3	Hydrogen	SECM	2018-08-25	Operationa
27	C203	43107	MEO-7	BDS-3	Hydrogen	SECM	2018-01-12	Operationa
28	C204	43108	MEO-8	BDS-3	Hydrogen	SECM	2018-01-12	Operationa
29	C207	43245	MEO-9	BDS-3	Hydrogen	SECM	2018-03-30	Operationa
30	C208	43246	MEO-10	BDS-3	Hydrogen	SECM	2018-03-30	Operationa
31	C101	40549	IGSO-1S	BDS-3S	Hydrogen	SECM	2015-03-30	Experiment
32	C213	43622	MEO-13	BDS-3	Rubidium	CASC	2018-09-19	Operationa
33	C214	43623	MEO-14	BDS-3	Rubidium	CASC	2018-09-19	Operationa
34	C216	43648	MEO-15	BDS-3	Hydrogen	SECM	2018-10-15	Operationa
35	C215	43647	MEO-16	BDS-3	Hydrogen	SECM	2018-10-15	Operationa
36	C218	43706	MEO-17	BDS-3	Rubidium	CASC	2018-11-19	Operationa
37	C219	43707	MEO-18	BDS-3	Rubidium	CASC	2018-11-19	Operationa
38	C220	44204	IGSO-1	BDS-3	Hydrogen	CASC	2019-04-20	Operationa
39	C221	44337	IGSO-2	BDS-3	Hydrogen	CASC	2019-06-25	Operationa
40	C224	44709	IGSO-3	BDS-3	Hydrogen	CASC	2019-11-05	Operationa
41	C227	44864	MEO-19	BDS-3	Hydrogen	CASC	2019-12-16	Operationa
42	C228	44865	MEO-20	BDS-3	Hydrogen	CASC	2019-12-16	Operationa
43	C226	44794	MEO-21	BDS-3	Hydrogen	SECM	2019-11-23	Operationa
44	C225	44793	MEO-22	BDS-3	Hydrogen	SECM	2019-11-23	Operationa
45	C223	44543	MEO-23	BDS-3	Rubidium	CASC	2019-09-23	Operationa
46	C222	44542	MEO-24	BDS-3	Rubidium	CASC	2019-09-23	Operationa
56	C104	40938	IGSO-2S	BDS-3S	Hydrogen	CASC	2015-09-30	Experiment
57	C102	40749	MEO-1S	BDS-3S	Rubidium	CASC	2015-07-25	Experiment
58	C103	40748	MEO-2S	BDS-3S	Rubidium	CASC	2015-07-25	Experimen
59	C217	43683	GEO-1	BDS-3	Hydrogen	CASC	2018-11-01	Operationa
60	C229	45344	GE0-2	BDS-3	Hydrogen	CASC	2020-03-09	Operationa
61	C230	45807	GEO-3	BDS-3	Hydrogen	CASC	2020-06-23	Testing

BDS-3 Satellites

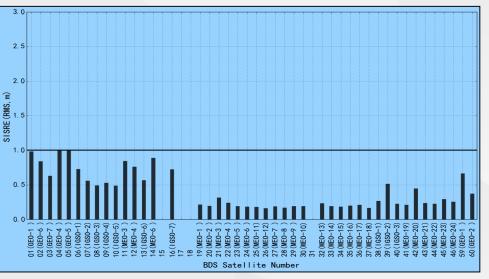
The overall BDS performance

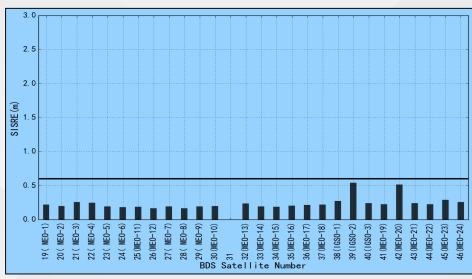



- Realize global coverage capability, with PDOP availability (PDOP ≤6) 100%
- Horizontally positioning accuracy is about 1.5m, vertical positioning accuracy is about 2.5m (global average, B1C single frequency), velocity accuracy is about 0.05m/s and timing accuracy is 9.8ns (95%)

PDOP Availability

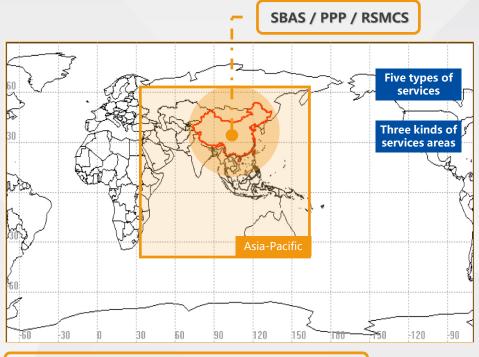
The BDS Signal Availability in August 2020




B1I/B3I

B1C/B2a

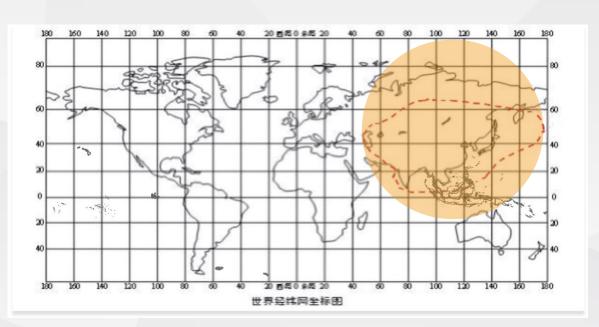
The BDS SISRE in August 2020


B1I/B3I

B1C/B2a

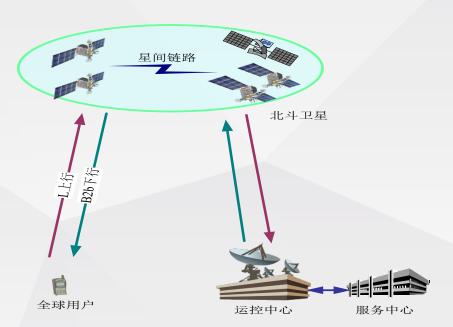
The BDS-3 Featured Services

Type of s	ervice	Signal frequency	Satellite	
Basic nav	igation	B1I, B3I, B1C, B2a	3IGSO+24MEO	
servic	es	B1I, B3I	3GEO	
BDSBAS		BDSBAS-B1C, BDSBAS-B2a	3GEO	
Short-	Regional	L (uplink) S (downlink)	3GEO	
message communicati	Global	L (uplink)	14MEO	
on services		B2b (downlink)	3IGSO+24MEO	
Internationa	l search	UHF (uplink)	6MEO	
and rescue	service	B2b (downlink)	3IGSO+24MEO	
Precise Positioning		B2b	3GEO	

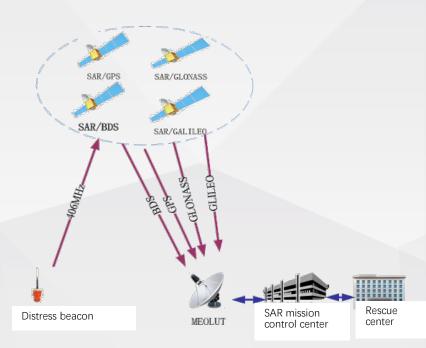


Navigation, Positioning and Timing / GSMCS / SAR

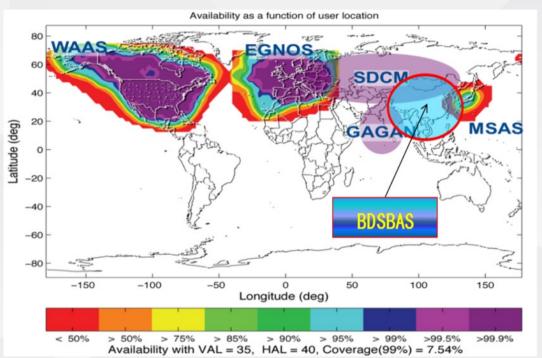
Short-message Communication Services (Regional)


- Offered by 3 GEO satellites
- Serve China and the surrounding regions
- System capacity is increased by 10 times:
 - System processing capacity of more than 12M/hour concurrent service requests.
 - 1,000 Chinese characters per message..
 - The user uplink transmission power is reduced by 90%.

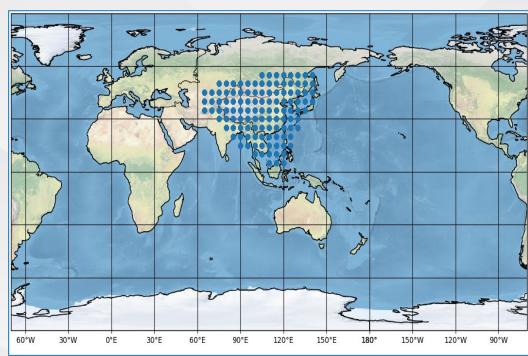
Short-message Communication Services (Global)


- 14 MEO satellites
- Global coverage
- 40 Chinese characters per message
- Service capacity of more than 300,000/hour concurrent service requests..

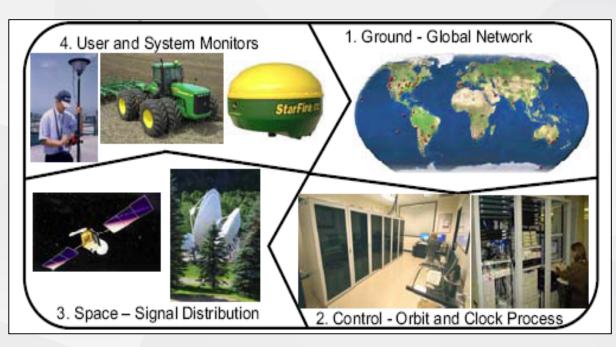
International Search and Rescue Services


- Follow international standards
- 6 MEO satellites with the SAR payload
- Return-link capacity is proposed to COSPAS-MEOSAR.
- In July 2020, tests were conducted with the COSPAS-SARSAT ground station in Maryland and achieved satisfactory results.

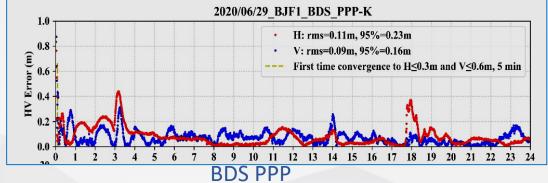
Satellite-based Augmentation Services

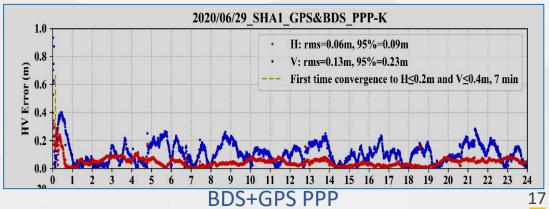

- 3 GEO satellites
- Follow ICAO standards
- Serve China and the surrounding regions

Satellite-based Augmentation Services


- BDSBAS-B1C(1574.42MHZ) signal for the single frequency SBAS service.
- BDSBAS B2a(1176.45MHZ) signal for the DFMC SBAS service.
 - Both signals are being broadcast to support non-safety applications (with Message Type 0 being broadcast in every 6s or less).

Precise Point Positioning Services


- 3 GEO satellites
- Serve China and the surrounding regions
- PPP-RTK in China and surrounding regions in the future
- Global PPP broadcast by MEO satellite in the future



Precise Point Positioning Services

- Use BDS-3 B2b signal to broadcasting orbit, clock, and DCB corrections;
- Support both BDS and GPS PPP capability;
- With accuracy of better than 0.3m(95%) in dynamic testing.
- Time to convergence for PPP is less than 30min.

The BDS Industries

The BDS contribution to core industrial output value

2019 **RMB**

345 billion

2020 **RMB**

400+ billion

Fundamental products

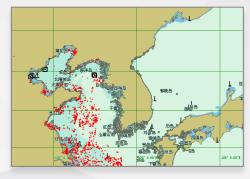
The sales of domestically made BDS-enabled chips reached over 80 million, with the domestic high-precision board chips and antennas being sold to over 100 countries and regions, and accounting for 30% and 90% of the domestic market respectively.

Industrial and Regional Applications

 The BDS-enabled products have been widely used in traffic & transportation, public security, agriculture, forestry and fishing, hydrologic monitoring, weather forecast, communications system, generation dispatch and disaster response & relief, as well as national

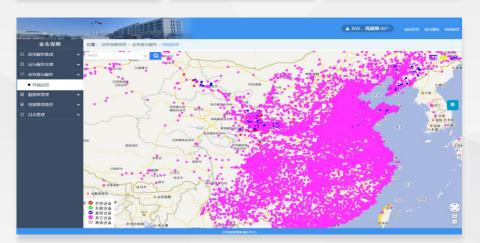
Applications in traffic and transportation

- The world's largest dynamic monitoring system for operational vehicles has been built
- Nearly 7 million registered operational vehicles
- 30,000 postal and delivery vehicles
- **80,000** buses
- Over 3,200 inland waterway navigation facilities
- Over 2,900 marine navigation facilities



Applications in agriculture, forestry and fishing

- The BDS-based equipment have been installed on over 70,000 sets of agricultural machinery.
- Precision farming output has increased by 5%.
- Income growth of RMB 60-90 per Mu. Positioning & short-message communication function helps to prevent forest fires.
- Over 70,000 boats have been equipped with BDS terminals and over 10,000 people have been rescued.


Applications in Disaster Response and Relief

- Six levels of business applications have been implemented
- Over 45,000 BDS terminals have been deployed
- Relevant disaster response information has been reported
- The resource management and logistic control capabilities for disaster relief have been improved
- The BDS-based technologies have played important roles in fighting against COVID-19.

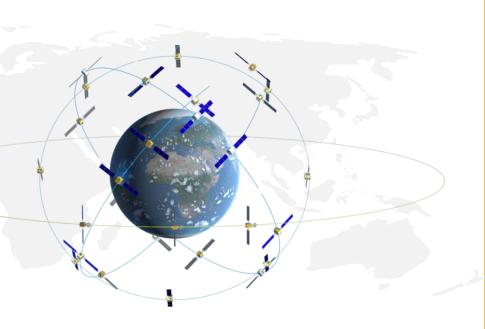
Mass Market Applications

Mass Market Applications

The International BDS Applications

- Land rights confirmation in Indonesia
- Building construction deformation monitoring in Kuwait
- Homeland surveying and mapping in Uganda
- Agriculture in Myanmar
- Marine piling in Maldives
- Construction of piling in Singapore

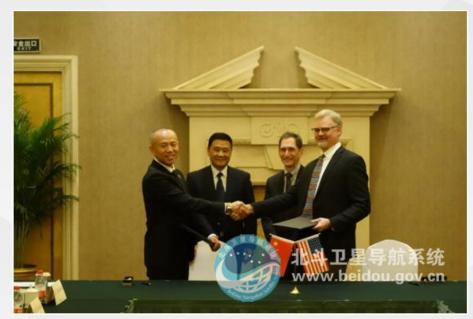
- Land rights confirmation in Laos
- UAVs in Cambodia
- Postal services and ecommerce in Uganda
- Timing service in Pakistan airports Electricity patrolling and checking in Russia



Open Cooperation

Resource Sharing

The UN International Committee on Global Navigation Satellite Systems (ICG)


13th Meeting of the International Committee on Global Navigation Satellite Systems

The China-US Cooperation

- Three plenary meetings of the China-US Cooperation have been held. Working groups have been set up to discuss related topics.
- "The Joint Statement on Civil Signal Compatibility and Interoperability between GPS and BDS" was signed in November 2017

The China-Russia Cooperation

The China-Arab States BDS Cooperation

International standards

International Electrotechnical Commission

International Conferences

China Satellite Navigation Office
International Cooperation
The China Satellite Navigation Conference (CSNC) –
CSNC2020 ("GNSS, New Global Era") : November 23-25, 2020, Chengdu, China

Conclusion

Looking back on the past decade and looking into the new journey,

- During the past decade, BDS has gone global successfully, being developed from struggling to keep up with its peers, to matching its peers.
- The BDS/GNSS based technologies have played important roles in fighting against COVID-19.
- In the next decade, BDS will play a more active role in serving mankind and the world and keep contributing wisdom and strength to the world with its stronger abilities and better-quality services.

Thank you.

Dr. Jun Shen (<u>shenjun@beidou.gov.cn</u>)
International Cooperation Center, China Satellite Navigation Office

Dr. Changjiang Geng (*gengchj@beidou.gov.cn*)
Test and Assessment Research Center, China Satellite Navigation Office

http://en.beidou.gov.cn