Characterization of Radio Frequency Interference for GNSS Maritime Applications

Emilio Pérez Marcos

Institute of Communications and Navigation German Aerospace Center (DLR)

Knowledge for Tomorrow

Motivation

- "90% of all trade takes place across the world's oceans, involving over 500 million containers on 89,000 maritime vessels each year" [1]
- GNSS technology has been widely adopted and trusted (up to now)
- Shipborne GNSS navigation aids have almost not changed in last 20 years
- GNSS service reliability is of increasing concern
- Events reported but not yet a systematic, long duration campaign

Some of the so-called Personal Privacy Devices → (PPDs)

[1] International Chamber of Shipping

Scope

- What? Increase the interference awareness for GNSS services in the maritime domain
- How? Conduct an international measurement campaign and data postprocessing
 - Uniqueness: Global; Monitoring; Systematic; long Duration
- \rightarrow We need:
- Develop an autonomous system able to detect, observe and record RFI events in GNSS frequency bands
- Analyze the recorded data in "a proper way" \rightarrow Develop a Methodology

Measurement Platform (i)

- Tonnage 142,292 tons
- Beam 157 ft
- Length 1200 ft
- Height 148 ft

Hapag-Lloyd

366 m

(1200 ft)

Measurement Platform (ii)

Measurement System

- 7 elements antenna array (covariance)
- Two IF bands (L1/E1 & L5/E5a)
- Snapshot Data: 30-50 ms of data @ 100 MHz
- Storage: 4 TB & satellite link 75 MB
- Calibration for DoA

Concurrent metrics

Snapshot recorder

Received Power

from recorded IF raw samples

peaks in power

DLR GNSS receiver

Spatial Covariance

joint variability of 7 antenna elements

 \sim peaks in eigenvalues (λ)

potential interference

Recorded Route (September '17 to January '18)

39,045 snapshots recorded!

CW, Wideband and PPD RFIs

Suez Canal event (i)

Suez Canal event (ii)

Detected RFI events

- At certain locations at different visit times events were detected
 → threat is consistent!
- Harbours (coasts) are the most critical
- Events are also detected in open sea

What about L5/E5a?

Conclusions & Outlook

High resolution **raw** and **GNSS** data belonging to the **maritime domain** recorded during a period of 11 months

many **non expected** RFIs detected in L1/E1 (NAV reserved) & L5/E5a bands \rightarrow

- GNSS time & position service is unreliable and
- cannot be **completely trusted** anymore
- harbours are specially sensitive → receivers should deal with it!

Keep looking at the data

Threat model is required in order to aware manufactures and users

DLR's solution: antenna array systems

GNSS E1/E5 standard and miniaturized

Conformal antenna array

Miniaturized array and Receiver (ARINC form-factor)

DLR's solution: antenna array systems

DLR's Baltic Jamming Testbed 2016

Jamming equipment

Antennas

DLR's Baltic Jamming Testbed 2016

Emilio.PerezMarcos@dlr.de

Thank You!

Q&A

