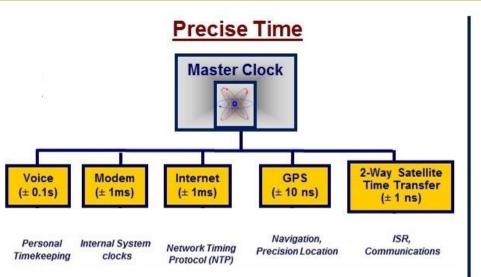
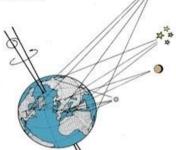


USNO Report to the CGSIC Timing Subcommittee

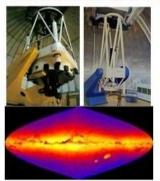

Stephen Mitchell

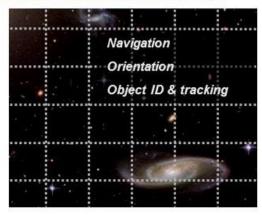
U.S. Naval Observatory (USNO)

September 16, 2019



USNO Mission Areas




Earth Orientation Parameters

- ⋆ Departures from "pure" rotation
- Synchs the earth and its orbiting space platforms
- ★ GPS Error = 2 meters w/in 1 week & 400 meters at 6 months w/o EOP

<u> Astrometry – star positions & motions</u>

<u>Astronomical Applications</u>

Almanacs & Celestial Navigation

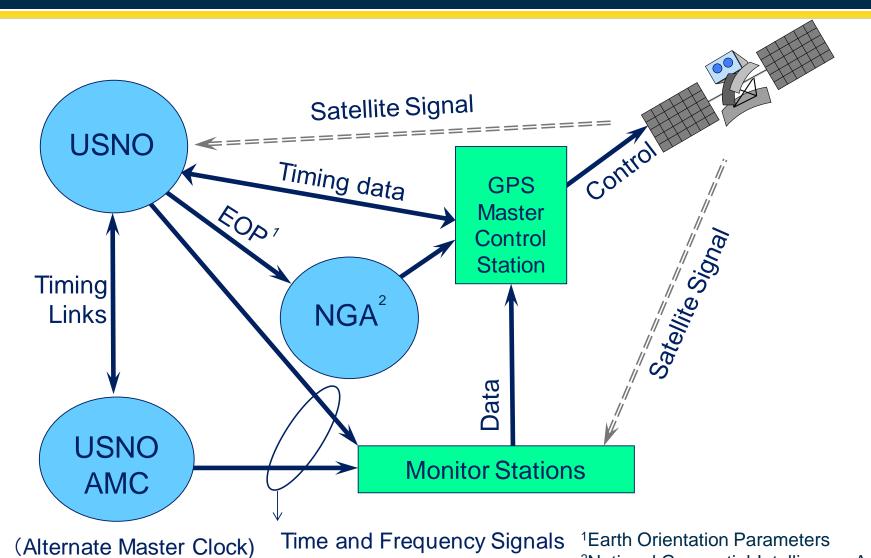
Solar/Lunar Illumination

Precise Timing Applications

Communications

Power Grid

Financial



Scientific

Precise Timing is Critical to the Modern World's Infrastructure

GPS Operations and USNO

United States Fleet Forces

²National Geospatial-Intelligence Agency

GPS Time and USNO

GPS Time

- Internal system timescale of GPS
- Continuous → No leap seconds; fixed to UTC on January 6th, 1980
- 18 seconds off from UTC now
- An intelligent average of satellite and ground monitor station clocks

USNO utilizes a specialized set of calibrated GPS timing receivers to track GPS

 We compute the offset of GPS System Time to UTC(USNO) and deliver this to the United States Air Force (USAF)

USAF 2nd Space Operations Squadron (2SOPS) use these data to steer GPS Time to match UTC(USNO) modulo 1s

• There are no time or frequency steps in GPS Time, only steps in the frequency drift

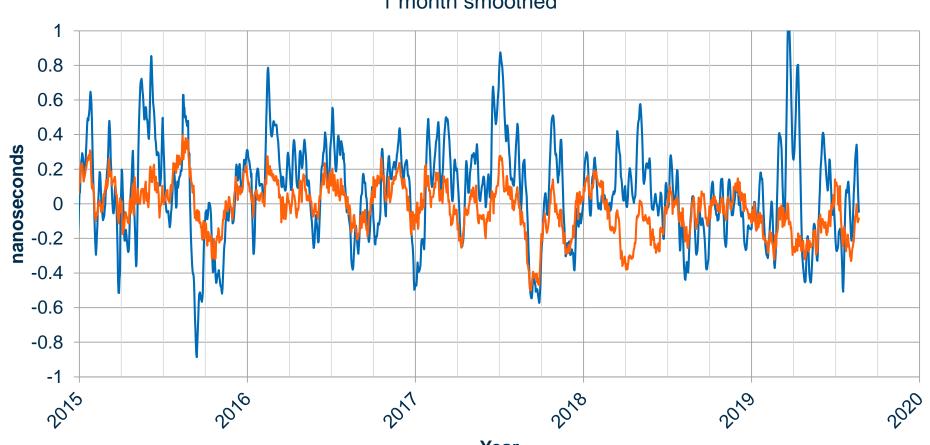
GPS delivers timing and frequency offsets to convert from GPS Time to a prediction of UTC(USNO)

 This information is contained in the GPS Legacy Navigation (LNAV) data in Subframe 4, Page 18 (SF4P18), and in the modernized Civil Navigation (CNAV) in Message Type 33

GPS Time Delivery, 30-day Averages

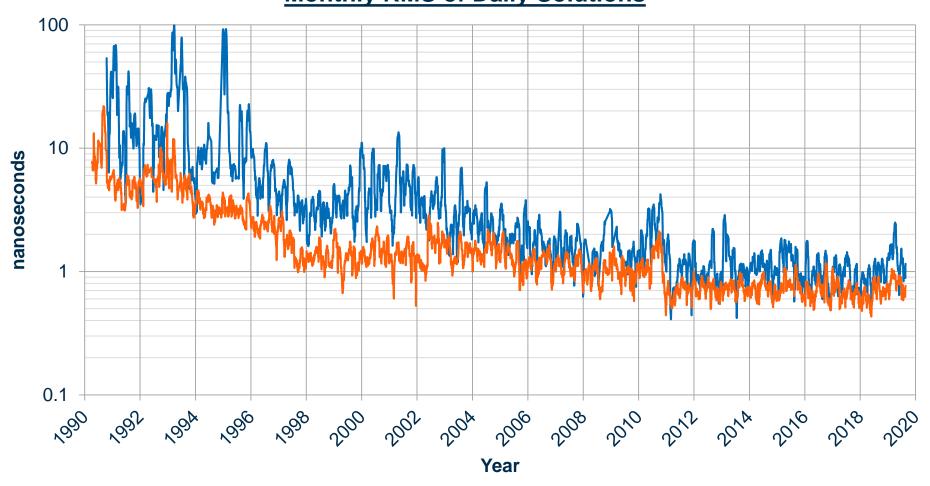
GPS Time and GPS Predicted UTC(USNO)

1 month smoothed


-GPS - UTC(USNO) modulo 1s — Error in GPS Predicted UTC(USNO)

GPS Timing, More Recent History

Year


-GPS - UTC(USNO) modulo 1s

—Error in GPS Predicted UTC(USNO)

GPS Timing Instability

Monthly RMS of Daily Solutions

—GPS - UTC(USNO) modulo 1s

—Error in GPS Predicted UTC(USNO)

GPS + other GNSS Added Benefit

GNSS: Global Navigation Satellite System (such as GPS, GALILEO, etc.)

Increased reliability and availability of Position, Navigation, and Timing

 Especially in challenging environments such as urban canyons where users can only see 1-2 satellites from each system

Challenge: Ensure interoperability of all different GNSS

- Need to measure and report timing offset between systems
 - GPS-to-GNSS Time Offset (GGTO)
- Requires stable, repeatable GNSS receiver calibration for all GNSS signals

USNO will provide GGTOs for broadcast by GPS

- USNO is presently providing both GLONASS and Galileo time differences in support of special CNAV testing (not presently being broadcast)
- CNAV Message Type 35 contains the GPS-to-GNSS Offset (GGTO) for various systems
- Current schedule for broadcast is 2022 with the GPS Next Generation Operational Control System (OCX)

USNO Additional GPS III support

USNO will act to coordinate GPS Time with other Global Navigation Satellite Systems' Time and provide a correction message to GPS (GGTO)

Also supporting OCX, USNO will work with USAF for the determination of the GPS satellite and reference stations inter-signal and inter-frequency biases

- This is needed to ensure that average constellation biases are removed in a consistent way to ensure accuracy for timing user community
- Absolute calibrations to be used by USNO

GNSS simulator calibration procedures are being validated and tested to ensure consistency and accuracy

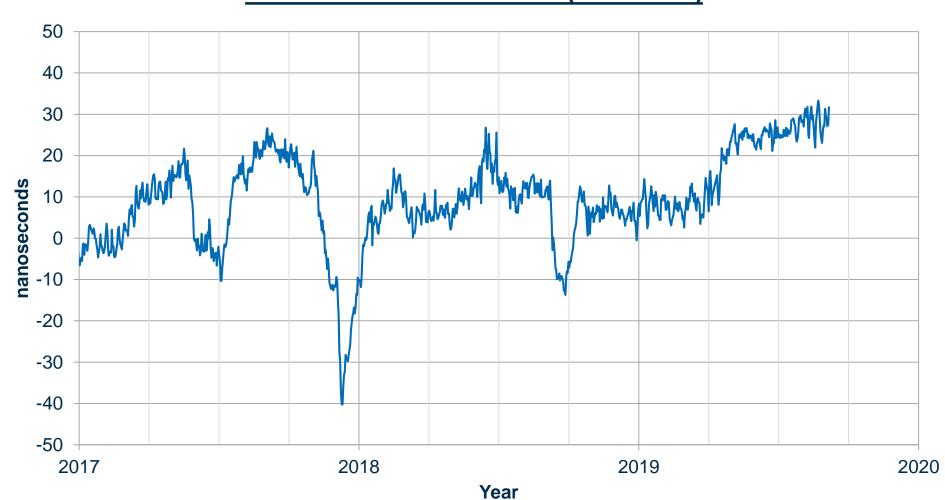
GALILEO GGTO

GPS Time - GALILEO Time (modulo 1s)

GALILEO GGTO

GPS Time - GALILEO Time (modulo 1s)

GLONASS GGTO


GPS Time - GLONASS Time (modulo 1s)

GLONASS GGTO

GPS Time - GLONASS Time (modulo 1s)

Summary

USNO specializes in real-time timekeeping

GPS supports many Precise Time Users

USNO provides the timing reference for GPS

- Monitor and report the offset of GPS Time from UTC(USNO)
- Ensure the validity of reported numbers through receiver calibrations

USNO monitors other GNSS Time

Will report GGTO data to GPS with OCX

Backup Slides

GPS Week Rollover

GPS Time is defined in the legacy GPS navigation message to cover finite period of 1024 weeks due to its 10 bit representation

GPS started on Jan 6, 1980

The first GPS Time Epoch ended on Aug 21/22 1999, the second on April 6/7 2019.

GPS Time is presently in its third Epoch which will end on November 20, 2038.

It is up to the user and user receiver to resolve this week number ambiguity

The Modernized Navigation message has a 13-bit week number, which for all practical purposes will not encounter a rollover