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Goal

Control a clock to be
1. OnTime
2. On Frequency

With respect to
* Master Clock, such as UTC(k)
 or GPS
* or other GNSS



The Means to the Goal: Steering

Steer = frequency adjustment

The Gain is the Game

e Gain Vector=G = (Ix 9y)

hase
o Steer =-(Ix Yy) (frzejquency)

(phase = time for purpose of this talk)



Nothing is Perfect

« Asteered clock will never exactly mimic the Master
» You can optimize some aspects of Its performance
* Only at the expense of other aspects
» Some performance elements:
» Steady-state RMS deviation in time
« Steady-state RMS deviation in frequency
 Short-term Instability due to excessive steering
* Response to non-stochastic disturbances



One way: LQG = Linear Quadratic Gaussian

Optimal Gains for your priorities

Compromise between Equivalently
» frequency offset RMS « (frequency RMS)/(steers RMS)
* phase offset RMS « (phase RMS)/(steers RMS)

* steers RMS
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LQG in two plots

Phase Component of Gain Vector (gx}
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Frequency Component of Gain Vector (gy)
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Alternate approach: setting Time Constants

e How quickly does it recover from:
e Noise fluctuations
e Systematic variations
e Non-Gaussian behavior (jumps, etc.)

e Typically two time constants are at work
e Short-term exponential

e Long-term exponential

e Can also have [decaying] oscillations



Critical Gains

Result in only one time constant and no oscillations

« T=Time Constant
* gx=(1- e_l/T)Z
¢ gy=1—e72T



Gains and Time Constants

" Regimes of Imaginary, Positive, and Negative Poles
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In the “real world”

« Systems need to be super-robust
* Especially if not monitored or redundant

* Crystal or Rubidium oscillators

« Example: a controlled clock at time t
* Phase offset =X
* Frequency offset =0
* So steer is—g,*X

* If controlled clock’s raw frequency shifts by +g,*X
The clock oscillator’s frequency drift negates the steering
If it happens as random fluctuation, no problem
What about a crystal with systematic freq. drift= +g,*X?
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PID Controllers

» Use three gains
* P =Phase gain
* D =Derivative gain (Freguency gain)
* | = Integral gain = sum of past Phase deviations
* The Integral gain (*I”)
 can handle systematic freq. drift in underlying clock
* as inthe previous slide
 can lead to faster convergence

« BUT the extra gain parameter requires care
« can lead to instabilities, excessive overshooting
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Many ad-hoc PID optimization methods exist

* The Wikipedia lists 6 classes of approaches

» A seventh Is analogous to the critical gains:
« gp=1-—3e72/T 273/
« g =1-3e YT +372/T — ¢=3/T
* gp=1-e737

« T=Time Constant, in units of measurement interval

My timeisup
« But the work has just begun!
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backups




Separation Principle

The optimal gain Is independent of the state estimate
(1.e. how good your clocks are)

— The calculations for optimality do not use any state
estimation parameters

— But you MUST make an optimal state estimate
* given your data and clock stability
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Stabilities associated with critical gains

%Es of Critical Gains Relative to their Minima, R=0.01,0Q0=0.01
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Effect of 10-day delay in Circular T

frequency gain
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Minimum RMS as a function of gains

2Nt"l‘h Ph RMS,R=0.01.Q=0.04 min pg=1 fg=1 min=0.254 Nrm F RMS,R=0.01.Q=0.04 min pg=0.01 fg=1 min=0.20081 Nrn12C RMS,R=0.01.Q=0.04 min pg=0.01 fg=0.1 min=0.066703

Phase Frequency Steer
RMS RMS RMS
(normalized) (normalized) (normalized

e Contour details depend on assumed noises
e LQG finds optimum gains for any linear sum of their variances
e independently of the noises
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Three cost functions

, Cost,R=0.01.Q=1,pc=0.0001,fc=0.001 pg=0.01 fg=0.13 mn=0.39589
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Phase Cost=1000
Freq Cost=100
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frequency gain

Cost,R=0.01.Q=0.01,pc=100,fc=1000 pg=0.27 fg=1 mn=4.4162

phase gain

Phase Cost=100
Freq Cost=1000
Steer Cost=1
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Z-Transforms and Poles

Pk = (2 =791 — 92)0k-1 — (1 — g2)pk—2 + ng,

p, =state, n, =noise, T = spacing

- Desire: exponential behavior for p, = pge /T
« Take Z-transform of both sides
* Leads to equations for gains g; and g,

* Osclllatory solutions have imaginary T's

* Others have two real decay times T

* Avery few critical gains have one decay time
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