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Controlling Clocks

Demetrios Matsakis

Masterclock, Inc.

A ten-minute tour



If this interests you …

Matsakis, Metrologia 56 (1), March 8, 2019

Free download:

https://iopscience.iop.org/article/10.1088/1681-7575/ab0614

“TMI version” 

Matsakis, ION-PTTI 2019

Free download

https://tycho.usno.navy.mil/papers/ts-

2019/ControlledClocks.IONPTTI.Matsakis2019.pdf
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Goal

Control a clock to be 

1. On Time

2. On Frequency

With respect to 

• Master Clock, such as UTC(k)

• or GPS

• or other GNSS

2



3

The Means to the Goal: Steering 

Steer = frequency adjustment

The Gain is the Game

• Gain Vector = 𝐺 = 𝑔𝑥 𝑔𝑦

• Steer  = - 𝑔𝑥 𝑔𝑦
𝑝ℎ𝑎𝑠𝑒

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

(phase = time for purpose of this talk)



Nothing is Perfect
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• A steered clock will never exactly mimic the Master

• You can optimize some aspects of its performance

• Only at the expense of other aspects

• Some performance elements:

• Steady-state RMS deviation in time

• Steady-state RMS deviation in frequency

• Short-term instability due to excessive steering

• Response to non-stochastic disturbances
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One way: LQG = Linear Quadratic Gaussian

Equivalently

• (frequency RMS)/(steers RMS)

• (phase RMS)/(steers RMS)

Optimal Gains for your priorities

Compromise between

• frequency offset RMS

• phase offset RMS

• steers RMS



LQG in two plots
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Alternate approach: setting Time Constants
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• How quickly does it recover from:

• Noise fluctuations

• Systematic variations

• Non-Gaussian behavior (jumps, etc.) 

• Typically two time constants are at work

• Short-term exponential

• Long-term exponential 

• Can also have [decaying] oscillations



Critical Gains
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• T=Time Constant

• 𝑔𝑥 = (1 − 𝑒−1/𝑇)2

• 𝑔y = 1 − 𝑒−2/𝑇

Result in only one  time constant and no oscillations



Gains and Time Constants

9Critical Gains

Oscillations 

at Nyquist 

frequency



In the “real world”

• Systems need to be super-robust

• Especially if not monitored or redundant

• Crystal or Rubidium oscillators

• Example: a controlled clock at time t

• Phase offset =X

• Frequency offset = 0

• So steer is –gx*X

• If controlled clock’s raw frequency shifts by +gx*X

• The clock oscillator’s frequency drift negates the steering

• If it happens as random fluctuation, no problem

• What about a crystal with systematic freq. drift= +gx*X?
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PID Controllers

• Use three gains

• P = Phase gain

• D =Derivative gain (Frequency gain)

• I = Integral gain = sum of past Phase deviations

• The Integral gain (“I”) 

• can handle systematic freq. drift in underlying clock

• as in the previous slide

• can lead to faster convergence

• BUT the extra gain parameter requires care

• can lead to instabilities, excessive overshooting
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Many ad-hoc PID optimization methods exist

• The Wikipedia lists 6 classes of approaches

• A seventh is analogous to the critical gains:

• 𝑔𝑃 = 1 − 3𝑒−2/𝑇 + 2𝑒−3/𝑇

• 𝑔𝐼 = 1 − 3𝑒−1/𝑇 + 3𝑒−2/𝑇 − 𝑒−3/𝑇

• 𝑔𝐷 = 1 − 𝑒−3/𝑇

• T=Time Constant, in units of measurement interval

• My time is up

• But the work has just begun!
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backups
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Separation Principle

The optimal gain is independent of the state estimate

(i.e. how good your clocks are)

– The calculations for optimality do not use any state 

estimation parameters

– But you MUST make an optimal state estimate

• given your data and clock stability



Stabilities associated with critical gains
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Suboptimal State Estimation
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High Meas. Noise 

(R/Q=10)

Low Meas. Noise 

(R/Q=0.1)



Effect of 10-day delay in Circular T
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Measurement Noise = 1 ns

Freq Stab = 3 10-14 @ 1 month



Minimum RMS as a function of gains
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Phase

RMS

(normalized)

Frequency

RMS

(normalized)

Steer

RMS

(normalized

• Contour details depend on assumed noises

• LQG finds optimum gains for any linear sum of their variances

• independently of the noises



Three cost functions
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Phase Cost=1000

Freq Cost=100

Steer Cost=1

Phase Cost=10-4

Freq Cost=10-3

Steer Cost=1

Phase Cost=100

Freq Cost=1000

Steer Cost=1



Z-Transforms and Poles
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𝑝𝑘 = 2 − 𝜏𝑔1 − 𝑔2 𝑝𝑘−1 − 1 − 𝑔2 𝑝𝑘−2 + 𝑛𝑘

𝑝𝑘 =state, 𝑛𝑘 =noise, 𝜏 = spacing

• Desire: exponential behavior for 𝑝𝑘 = 𝑝0𝑒
−𝜏𝑘/𝑇

• Take Z-transform of both sides

• Leads to equations for gains 𝑔1 and 𝑔2
• Oscillatory solutions have imaginary T’s

• Others have two real decay times T

• A very few critical gains have one decay time  


