

CGSIC, Miami, 9/16/2019

Development of a Satellite-Based Cold Atom Clock

Liang Liu

Key Laboratory of Quantum Optics Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences

OUTLINE

1. Introduction

2. Laser cooling in diffuse light

4. Compact cold atom clock

5. Conclusions

OUTLINE

1. Introduction

中国科学院上海光学精密机械研究所

SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS CHINESE ACADEMY OF SCIENCES

JPL's Deep Space Atomic Clock

DSAC DU with the mercury ion trap configuration 29x26x23 cm, 16 kg, 50W, 1E-15/d

Satellite-based atomic clock

What we need for satellite-based atomic clock:

Small size: <300x300x300 mm
Light weight: <20kg
Less power: <50W
Good performance:

1s: <2E-13

- 1day: <1E-15
- Drift: <1E-15
- Uncertainty: <1E-15

Besides Mercury ion clock, an atomic clock with laser cooled atoms can reach the performance for next generation GNSS and deep space exploration.

Laser cooling of atoms

Harold J. Metcalf Peter van der Straten

Laser Cooling and Trapping

- □ Atoms are cooled at the bottom
- □ Cold atoms are launched upwards by lasers
- □ Cold atoms interact with microwave in the cavity
- □ Cold atoms drop after they reach the top
- □ Cold atoms interact with microwave again
- □ Cold atoms are detected by laser
- □ The signal feedback to microwave source

Typical Ramsey fringes, Paris

Atomic foutain

	FO1 (×10 ¹⁶)	FO2 (×10 ¹⁶)	FOM (×10 ¹⁶)
Quadratic Zeeman effect	1199.7 ± 4.5	1927.3 ± 0.3	351.9 ± 2.4
Blackbody radiation	-162.8 ± 2.5	-168.2 ± 2.5	-191.0 ± 2.5
Collisions and cavity pulling	-197.9 ± 2.4	-357.5 ± 2.0	-34.0 ± 5.8
Microwave spectral purity & leakage	0.0 ± 3.3	0.0 ± 4.3	0.0 ± 2.4
First order Doppler effect	< 3	< 3	< 2
Ramsey & Rabi pulling	< 1	< 1	< 1
Microwave recoil	< 1.4	< 1.4	< 1.4
Second order Doppler effect	< 0.08	< 0.08	< 0.08
Background collisions	< 1	< 1	< 1
Total uncertainty	± 7.5	± 6.5	±7.7

Systematic fractional frequency shifts for FO1, FO2 and FOM ¹³³Cs fountains

Cold Atom Clock Experiment in Space, CACES, with Tiangong-2

中国科君院上海火管核察机械码完所 SHANGHAI INSTITUTE OF OPTICS AND FILE MECHANICS CHINISE A CADEMY OF SOLE OFICS

Cold atom clock in space

Typical Ramsey fringe. The launching velocity is (A) 3.15 m/s, (B) 1.69 m/s, (C) 0.78 m/s, corresponding to the width (A) 7.27 Hz, (B) 3.89 Hz, and (C) 1.80 Hz.

OUTLINE

2. Laser cooling in diffuse light

中国科学院上海光学精密机械研究所

SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS CHINESE ACADEMY OF SCIENCES

Diffuse deceleration of an atomic beam

W. Ketterle, et. al., Phys. Rev. Lett. 69, 2483 (1992)

H. Batelaan, et.al., Phys. Rev. A 49, 2780 (1994)

Diffuse deceleration of an atomic beam

H.X. Chen, L. Liu and Y.Z. Wang, Acta Optica Sinica 14, 125 (1994) Y.Z. Wang and L. Liu, Australian J. Phys. 48, 267 (1995)

Laser cooling in an integrating sphere

A new scheme of laser cooling is introduced in order to reduce the device size: diffuse laser cooling

Typical integrating sphere

Principle of laser cooling in an integrating sphere

Laser cooling of atoms in diffuse light

E. Guillot, et al., Opt. Lett. 26, 1639 (2001), Cs

Laser cooling of atoms in diffuse light

H.D. Cheng, et al., Phys. Rev. A 79, 023407 (2009), Rb

Laser cooling of atoms in diffuse light

Power of cooling light (mW)

Controlling the distribution of atomic density

Controlling the distribution of atomic density

Controlling distribution of cold atom density in a spherical cavity

Controlling the distribution of atomic density

Axial

Radial

Controlling distribution of cold atom density in a cylindrical cavity

OUTLINE

3. Compact cold atom clock

中国科学院上海光学精密机械研究所

SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS CHINESE ACADEMY OF SCIENCES

Atomic clock with diffuse laser cooled atoms

A Pulsed Optically Pumped (POP) scheme: optical pumping, interrogation and detection are separate to avoid light shift.

A Pulsed Optically Pumped (POP) scheme with diffuse laser cooled atoms in an integrating sphere (ISCAC)

	Cs	Rb
Atom	¹³³ Cs	⁸⁷ Rb
Microwave frequency	9.192632 GHz	6.834682 GHz
D2 line	F=2	F=1
Melting temperature	28.84 °C	38.89 °С
Cooling laser wavelength	852.356 nm	780.241 nm

Atomic clock with diffuse laser cooled atoms

Microwave cavity

HORACE, Paris

ISCAC, Shanghai

Engineering model

Clock signals

Rabi oscillation

Ramsey fringe with linewidth 20 Hz

ISCAC stability

SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS CHINESE ACADEMY OF SCIENCES

OUTLINE

4. Conclusions

中国科学院上海光学精密机械研究所

SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS CHINESE ACADEMY OF SCIENCES

Possibilité de faire des mesures en « 0g », en « 1g » et en « 2g »

- Environnement accélérométrique relativement perturbé (~ 10⁻² g suivant Z)
 Environnement magnétique très variable (jusqu'à 1G de variation entre
- l'entrée et la sortie de la parabole)

3 vols de 31 paraboles chacun – 20 secondes de microgravité par parabole 30 minutes de mesure, par tranche de 20s, en tout et pour tout !!

Cold atom clock in microgravity

Comparaison entre « 0g », « 1g » et « 2g » pour un temps de ramsey de 50 ms

Gain d'un facteur 1,4 sur le nombre d'atomes et d'un facteur 1,7 sur le contraste pour T_R = 50 ms

Cold atom clock in microgravity

Comparaison entre « 0g » et « 1g » pour un temps de ramsey de 80 ms

Flight model of ISCAC

Stability of atomic clocks

Thanks for attention

