Optical Technologies for Global Satellite Navigation and Time Metrology

Christoph Günther

Kepler System in a Nutshell

- Reuse of the Galileo orbital slots -> migration scenario
- MEO MEO optical two-way links within the orbital plane
- Ultra stable time references cavity stabilized lasers
- Inter plane connectivity through LEO Satellites (constellation of 6 satellites at 1209 km)
- Iodine clocks on the LEO for autonomous time keeping up to roughly 1 hour
- Observation of the L-band signal from outside the atmosphere
- One ground station to preserve the alignment with earth rotation (not at the pole!) and with UTC
- GFZ: radial error < 1 cm: Michalak, Neumayer, Koenig

Verification and Validation Plans

- Time and frequency transfer in the Lab 2020 (talk Session B5 by Surof et al.)
- Time and frequency transfer in the test range Weilheim – Hohenpeißenberg 10.4 km in 2020
- Definition of a verification mission in LEO Orbit
 - launch 2023
 - optical terminals, (cavity), iodine clock, frequency comb
- OTTEx proposal for MEO Orbit
 - launch 2025
 - optical terminals, cavity, frequency comb

ISS-Bartolomeo

COFROS Satellite

Options for Time and Frequency Transfer

Kepler configuration

slower angular change

larger distances

Performance driver

- uncompensated vibrations
 - of the satellites
 - of the terminals
- terminal performance
- laser stabilized on cavity
- atmosphere (spatial and time decorrelation)

single step time transfer earlier availability

Potentially stable configuration

Inter-Terminal Noise and Offsets

Cavities (all satellites) and Iodine Clocks (LEO)

Cavity-stabilized laser NPL, Airbus, ESA

Iodine reference Schuldt, Braxmaier

Characterization of stability Schmidt, Schuldt

Clock Models and Time Synchronization

Trainotti, Giorgi, Furthner Detection and Identification of Faults in Clock Ensembles

ION GNSS 2019, Session E6

Optical Inter-Satellite Terminal Prototype

Surof, Poliak, Schmidt, Mata Calvo, Furthner

See also: Surof, Poliak, Mata Calvo, Richerzhagen, Wolf, Schmidt Laboratory Characterization of Optical Inter-satellite Links for Future GNSS ION GNSS 2019, Session B5

Measurement Setup

What can we hope for? Is it useful?

- What do we need for establishing an optical definition of the second?
- What do we need for an optical UTC standard?
- What if this standard was space based?
- What can we use precise time distribution for otherwise?
 - Relativistic geodesy?
 - Benefits compared to the tracking of probe masses (satellites)?

Hinkley et al., Science 2013

The Influence of the Atmosphere

The Optical Signal = DSSS in the Optical Domain

- Carrier frequency Nd:YAG
- Spread spectrum code: 511
- Bit modulation of 50 Mbps
- Duplex: polarization (and frequency)
- Chip rate: 25.51 Gcps
- Link budget assumes
 - Size of aperture 5-7 cm
 - Power < 5 W
 - driven by 50 Mbps
- Performance limited by the satellite, by the terminal and by the cavity

Optical Atmospheric Ground Tests

Impressions from the Test Sites...

Outlook

- Optical technologies for satellite navigation
 - very tight synchronization
 - selected precise ranges
 - high data transport capability
 - no jamming and spoofing
- How interesting are they for the time community?
 - At which level do we need to synchronize clocks?
 - Which geographic coverage, how often?
- How interesting is it for geodesy?

Acknowledgements

This work was performed in the project ADVANTAGE (Advanced Technologies for Navigation and Geodesy) project, and co-funded by the "Impuls- und Vernetzungsfond" of the Helmholtz Association under research grant ZT-0007.

