

Search for...

Opacity:

Reset About

Canada

п

Brasil

^

Bolivia

🗎 insarmaps.miami.edu

C

•

0

Arctic Ocean

Towards global InSAR deformation monitoring of volcanoes

insarmaps.miami.edu

Outline

NZ

- Sentinel-1, NISAR
- Examples from Ecuador, Indonesia
- Mauna Loa 2014-2017

				DV DV
Satellite	Rel Orbit	First Frame	Mode	Flight Dir.
Alos	74	2960	SM	D
Alos	423	620	SM	Α
Alos	425	640	SM	Α
Alos	72	2950	SM	D
Alos	72	2970	SM	D
ALOS	424	610	SM	Α -
ALOS	422	7010	SM	Α -
ALOS	422	650	SM	A

Falk Amelung, Yunjun Zhang, Bhuvan Varugu, Alfredo Terrero, Joshua Zahner Sara Mirzaee University of Miami

0

Global SAR coverage with Sentinel-1

InSAR time series analysis

One measurement every 6-12 days

> Continuous InSAR Timeseries (C-InSAR)

200 acquisitions acquired for Europe (ascending plus descending)

InSAR time series analysis

THE NASA-ISRO SAR (NISAR) DUAL-BAND MISSION

© 2019 California Institute of Technology. Government sponsorship acknowledged.

NISAR Science Observations Overview

NISAR Characteristic:	Enables:
L-band (23 cm wavelength)	Low temporal decorrelation and foliage penetration
S-band (9 cm wavelength)	Sensitivity to light vegetation
SweepSAR technique with Imaging Swath > 240 km	Global data collection
Polarimetry (Single/Dual/Quad)	Surface characterization and biomass estimation
12-day exact repeat	Rapid Sampling
3 – 10 meters mode- dependent SAR resolution	Small-scale observations
3 yrs (NASA) / 5 yrs (ISRO) science operations	Time-series analysis
Pointing control < 273 arcseconds	Deformation interferometry
Orbit control < 500 meters	Deformation interferometry
> 10% (S) / 50% (L) observation duty cycle	Complete land/ice coverage
Left-only pointing (Left/Right capability)	Uninterrupted time-series Rely on Sentinel-1 for Arctic

NISAR Will Uniquely Capture the Earth in Motion

Pacan

NISAR Systematic Observations L-band globally – S-band over selected areas

Persistent updated measurements of Earth 41 Tbits / day total L+S band science data downlink 120 Tbytes / day total L+S band L0-L2 data products

NISAR Data Products: Available from the Cloud

- L0, L1, L2 data products: SLCs, terrain-corrected SLCs, interferograms (unwrapped).
- Open and Free. From the Cloud (distributed by the ASF).

New for NiSAR:

- Geocoded SLCs and interferograms.
- On-demand processing on the Cloud: allows users to satisfy their needs
- (Custom-on-demand capability)

Relevance of GPS

- Cal-Val of geod. measuremnts
- Tropospheric correction (Ionospheric correction?)

NISAR Science User's Handbook

Describes:

- Science and Applications
- Mission Science Requirements
- Mission Design and CONOPS
- Flight System Characteristics
- Radar and Measurement Principles
- Data Products
- Will be revised prior to launch or as necessary

Other major documents:

- Cal/Val Plan
- Utilization Plan
- Application Workshop Reports
- 21 science and applications white papers

What happens before an eruption?

 Deformation can be one of the first signs of impending eruptions, along with earthquakes and degassing

Ecuador's Cotopaxi volcano may threaten 325,000 people

O 18 August 2015 Latin America & Caribbean

The 2015 crisis of Cotopaxi volcano,

Concerns:

- many fatalities from 1877 eruption
- lahars (can go to the coast)

Seismicity

Morales Rivera et al., 2017

Precursory inflation from InSAR time-series

Data used: 70 Cosmo-Skymed SAR images from Geohazard Supersites initiative

Key findings:

 InSAR detects 3 cm inflation on SW flank before eruption.

Precursory inflation from InSAR time-series

October 7 1999

Guagua Pichincha

Dacitic Stratovolcano 4760 m 10 km from downtown Quito Image © 2017 CNES / last big eruption in 1660 Image © 2017 DigitalGlobe Image © 2017 DigitalGlobe Image © 2017 DigitalGlobe

4.00 km

Imagery Date: 7/10/2014 lat -0.218850° lon -78.610651° elev 3195 m eye alt 19.

Image © 2017 CNES / Airbus Image © 2017 DigitalGlobe

Image © 2017 DigitalGlobe

729 m

2) 1970

2

Google earth

2014 - 2015

Image © 2017 CNES // Airbus Image © 2017 DigitalGlobe

(JA/WWW) Kajoola

Image © 2017 DigitalGlobe

729 m

Imagery Date: 2/14/2016 lat -0.169195° lon -78.610856° elev 4045 m eye alt 6.64 km 🔿

2

Google earth

2) 1970

Image 2017 CNES / Airbus

Google earth

125 m

2014 - 2015

Image © 2017 CNES / Airbus

Google earth

8

Imagery Date: 7/10/2014 lat -0.170721° lon -78.615276° elev 3978 m eye alt 4.56 km 🔿

125 m

1970

2016 - today

Image © 2017 CNES / Airbus

Google earth

2

Imagery Date: 7/10/2014 lat -0.170721° lon -78.615276° elev 3978 m eye alt 4.56 km 🔿

1970

125 m

Inter-Andean Valley, Ecuador, Sentinel, 2015-2019

Lava flow hazards of Mauna Loa eruptions

Fissure eruptions from dikes intruded into rift zone (1950, 1975, 1984).

Hilo Hawai'i, 1984

Lava flow hazards of Mauna Loa eruptions

Fissure eruptions from dikes intruded into rift zone (1950, 1975, 1984).

Sheraton Keauhou Bay Resort

2 1950 Honokua flow ocean entry

Google"

© 2009 Google Image © 2009 DigitalGlobe Image © 2009 TerraMetrics Data SIO, NOAA, U.S. Navy, NGA, GEBCO 19°28'12.61" N 155°52'17.97" W elev 804 m

1950 ocean entry

Eye alt 13.90 km 🔘

Lava flows from Mauna Loa threaten developments along the coast

The 1950 flow took only 3 hours from eruption initiation to ocean entry. A repeat could lead to disaster.

The eruption was preceeded 2 days by a M6.5 quake

The Hawaiian Volcanoes: Rift intrusion and decollement motion

The modes of deformation:

- □ rift intrusion
- seismic/aseismic decollement slip
- □ flank motion
- magma chamber inflation/deflation

Mauna Loa, Hawaii, 2014-2017 unrest period

LOS displacement from 110 Cosmo-Skymed images

unrest period started with east flank motion

Mauna Loa, Hawaii

LOS displacement from 110 Cosmo-Skymed images

unrest period started with east flank motion

Mauna Loa Source Model

- Dike-like magma body
- Mogi source
- Slip along eastern decollement

No slip along western decollement!

Coulomb stress changes

Feedback between dike inflation and decollement slip:

- dike inflation encourages decollement slip
- decollement slip encourages dike inflation

Temporal Variation

Is dike inflation variable with time?

GPS positions as as a function of time

- Little motion in West
- Change in Aug-Sep 2016

Southward propagation of dike in Sep 2015

East-west displacement from combining ascending and descending imagery

- Inflating dike is located 1.5 km further south during later time period
- southward motion is predicted by stress change models

Forecast:

There will be additional southward motion of the dike-like magma body and eventually it will erupt from the southflank

Questions?

