

CGSIC 2017 Oregon Real-time GNSS Network Critical Infrastructure for Emergency Response

Randy Oberg, PLS Lead Geodetic Surveyor Oregon Department of Transportation

1. 5000

4040 Fairview Industrial Ave. Salem, OR 97302 (503) 986-3103

> Joseph R. Thomas, PLS Chief of Surveys (503) 986-3316

Ken Bays, PLS (Retired) Lead Geodetic Surveyor (503) 986-3543

Randy D. Oberg Interim Lead Geodetic Surveyor (503) 986-3041

31-May-2017

Oregon Real-time GNSS Network: Critical Infrastructure For Emergency Response

March 1964 Alaska 9.2 magnitude subduction mega quake

EVIENTS

Background ORGN

ORGN Overview A Cooperative Network getting data from many sources

◆ 100 stations total (96% GPS and GLONASS)

- 41 station are ODOT Owned and Operated
- 59 Stations from partners
 - Plate Boundary Observatory (PBO)
 - Washington State Reference Network (WSRN)
 - o Counties
 - o Cities
 - o Private Business

Examples of ORGN Sites

Seal Rock

Pacific Northwest Geodetic Array Central Washington University

SOPAC READI Network Wester U.S.

READI network in Western U.S. – Utilizing 600+ real-time high-rate GPS stations spanning areas of high seismic and tsunami risk

- Real-Time Earthquake Analysis for Disaster mItigation network (READI): ~600 GPS stations, a NASA driven project
- Super set of GPS networks maintained by (sorted according to largest to smallest number of stations):
 - UNAVCO/PBO
 - · CWU/PANGA
 - USGS/Pasadena-SCIGN & Menlo Park
 - UC Berkeley/BARD
 - Scripps Institution of Oceanography/SCIGN
 - California Department of Transportation/CVSRN

http://sopac.ucsd.edu/projects/realtime/READI/

USGS Earthquakes Hazards Program

Steps Needed to Prepare the ORGN for Emergency Response

Power

- Communications
- Back Up Servers for Operating Software
- Quick Mobilization to Repair ORGN Sites
- Structural Monitoring

The ORGN provides **active** geodetic control stations that can be monitored for movement and readjusted quickly, as opposed to conventional **passive** control that will take years to replace once displaced or destroyed.

Typical ORGN GPS Sensor Cabinet

Battery Charger

GPS Sensor

Tomas Arrestor

Werker.

Battery

State Long Long

Internet Cable

Lightning Protector

GPS Amenna Ca

Rebuilding?

- 1. Check on ORGN Bases Stations
 - Operational
 - Stability
- Compute and publish coordinates ORGN stations (Temporary CORS)
 - GNSS Base Radio Operations
 - Drone and Scanner use
 - Provide data for post process
- 3. With communication reestablished, ORGN network RTK will become available again.
 - Communication with ORGN base stations
 - Communication with ORGN users (Rovers)

Why LiDAR?

Post-accident analysis – North Bend, OR

Why LiDAR?

Post-accident analysis – North Bend, OR

Oregon Department of Transportation Why LiDAR?

Post-accident analysis – North Bend, OR

The beach at Bandon, Oregon

Oregon Real-time GPS Network <u>www.TheORGN.net</u> ORGN@odot.state.or.us