

Robust GNSS for Timing Applications

57th Meeting of the CGSIC

Portland, Oregon September 25, 2017

Mo Kapila – Septentrio Americas <u>mo.kapila@septentrio.com</u>

Topics

- Septentrio Background
- Keys to Robustness for GNSS Timing
 - >Multi-frequency
 - Multi-constellation
 - >Anti-jamming
 - Spoof resilience
- Summary

Septentrio Global Resources for Global Positioning

* Septentrio corporate offices shown above. Additional dealers are located on 6 continents.

Americas

- Torrance, California

Asia-Pacific

- Causeway Bay, Hong Kong

Leuven Institutions

Septentrio – GNSS Technology for **Professional and Scientific Applications**

Reference Receivers

Timing Receivers

Space Weather

Survey and Mapping

Mobile Mapping

Unmanned Systems

Aerospace

Defense

Septentrio – GNSS Technology for Professional and Scientific Applications

Typical Septentrio Product Flexible Positioning Engine DGPS, RTK, PPP In-House Developed Multi-sensor **High Sensitivity Baseband ASIC** High update rates State-of-the-Art **RF** front-end High Linearity Multi-Frequency **COTS** components **Multi-Constellation** Multi-Antenna

Septentrio GNSS Product Lines – Professional and Scientific

AsteRx:

 Machine Control, Marine, Military & UAV segments

OEM Receiver Boards

Smart Antennas

Government &

Research Institutions

PolaRx:

Timing, Reference & Iono Monitoring GNSS Receivers

Integrated GNSS Receivers

Septentrio in Confidence

Septentrio GNSS Receivers for Time & Frequency Applications

PolaRx5TR

- **Multi-frequency GNSS Time and Frequency** Transfer
- **High-precision**, lownoise measurements
- > PPS input internal delay auto-calibration
- Fully compliant with **CCTF 4 and 5 (2015)**, **CGGTTS V2E**

AsteRx-m2 OEM > Compact, high-

- performance
- > Ultra-low power multi-frequency GNSS
- Time and frequency synchronization
- For Telecom, First **Responders**, Military, other OEMs

AIM+ Advanced Interference Mitigation: Most advanced anti-jamming technology, Suppressing the widest variety of interferers

Septentrio Advanced Timing Applications

National Timing Labs - UTC Contributors

Satellite Laser Ranging - Time & Frequency sync

Particle Physics

- Neutrino velocity measurement

Photo fro, INFN

10

By Comparing Individual Clocks with GNSS Time, They Can be Compared with Each Other

To compare the atomic clocks used in timing labs around the world, they need to be connected to an accurate GNSS time transfer receiver. This special type of receiver uses an <u>external</u> atomic clock and utilizes two output signals:

- > A pulse every second synchronized to UTC (PPS IN) and
- > A 10 MHz frequency reference; essentially a sine wave (REF IN)

To reach the nanosecond accuracies required, Septentrio applies its expertise:

- > Signal delays in all elements in the setup should be accurately calibrated
- BIPM maintains a set of pre-calibrated travelling receivers as calibration references.

Why Multi-Constellation GNSS? More Satellites = Higher Accuracy

SATELLITE AVAILABILITY

- Full open-sky conditions can be difficult to attain in urban environments
- Ex: Portland, Oregon in open-sky GPS max 12 SV
 - GPS+GLONASS max 22 SV

GPS+GLONASS+GALILEO + BEIDOU max 41SV

Why Multi-Constellation GNSS? More Satellites = Higher Accuracy

ROBUSTNESS

- Even if L1 signal is jammed), other carriers (L2, L5) can still provide a solution
- The use of multi-frequency GNSS equipment allows the calculation and removal of local ionospheric errors

The height of a static PolaRxS receiver with and without scintillation-improved algorithms.

(Supplied by: B. Bougard from data collected as part of the CIGALA project, Brazil)

GNSS RFI Vulnerability: Interference Is Everywhere

- ➢ GNSS signals received on the ground are very low power
- Sharing of radio spectrum with other services, some operating at high power (Ligado, Iridium, Inmarsat, Distance Measuring Equipment)

Narrowband Wideband Unintentional Intentional (jamming)

Pulsed Continuous

In-band Out of band

Spectral Allocation – United States

UNITED STATES FREQUENCY ALLOCATIONS

THE RADIO SPECTRUM RADIO SERVICES COLOR LEGEND ADREADING WITH ADDREAD NATION LANDAUMER NOR LAND HORLE LAND HORLE MARTINE MORE A A AUTOLOTE MANUAL ACCORDANCE MARTINE ADDITION ADDITION METHORN CORCAL MINUT STRATE OFFICE OF METEROLOGICAL SINCE METERALTE TEOREARD PROCESSOR MORE PORD MUTLIME MOREL MORELY AND THE SOURCE AND LODGE ACTIVITY CODE SOADBAMENT DULUD R GATEMENT NOS GATEMENT REACT NON-GOADDINENTICULINAR ALLOCATION USAGE DESIGNATION Copie/Lines (copie/Lines) U.S. DEPARTMENT OF COMMERCE An and the instrument of the later. In the second form, the second secon

Septentrio AIM+ Advanced Interference Mitigation

Out-of-band

Multiple Demodulators

In-band

- 3 notch filters
- Wide band interference mitigation Unit (WIMU)
- Pulse-blanking

-75 dBm @ 1575,42 MHz

Spoofing Threats Must Be Addressed

- Inexpensive software-defined radio spoofers will pose a significant threat to GNSS equipment
 - Just a few hundred dollars
 - Thousands in the field
- By emulating GNSS signals, SDR spoofers convince a receiver that it is somewhere other than its true location
- Septentrio has tested their effectiveness and can now demonstrate how spoofing may be mitigated

Septentrio at ION GNSS+

Session B4:	Spectrum: Protection and
	Optimization
Date:	Thursday, Sept. 28, 2017
Time:	1:45 p.m 5:30 p.m.
Location:	Room B110/B111/B112

Wim de Wilde presentation*

 Spoofing Threats: Reality Check, Impact and Cure

*If you do not attend, this paper is available after ION GNSS+

Septentrio Summary for Delivering Robust, Accurate GNSS Timing

Maximize GNSS signals

Calculate and resolve ionospheric errors

- Mitigate the effects of narrowband and wideband intereference
- >Address the threat of spoofing

Questions?

Mo Kapila Director of OEM Sales

(M) +1-949-300-1524

mo.kapila@septentrio.com

Europe

Greenhill Campus Interleuvenlaan 15G, 3001 Leuven Belgium

+32 16 30 08 00

@septentrio www.septentrio.com

Appendix

Septentrio Core Technologies for Reliable Accuracy in Challenging Environments

Professional and Scientific GNSS applications

RF front-end & Clock

- Multi-Frequency Multi-Constellation
- High interference immunity
- High stability (biases over temperature)
- COTS or RFIC

SoC, ASIC

- All-in-view multi-frequency multi-constellation
- Fast acquisition
- Built-in interference mitigation (incl. chirp)
- Advanced power management

DSP

- All signals in space (GPS, GLO, GAL, BDS, QZSS)
- multi-path mitigation (wide-band arch., APME)
- Very low measurement noise
- High sensitivity

PVT: Position Velocity & Timing

- Scalable accuracy : sub-meter down to cm
- High reliability
- High availability in challenging environments
- All technologies (SBAS, DGNSS, RTK, PPP, SSR)

PolaRx5 Product Family: Application-Specific Models

		PolaRx5 Reference Receiver	PolaRx5S Iono Monitoring	PolaRx5TR Time & Freq Transfer
Hardware	Internal clock	TCXO	ΟϹΧΟ	ТСХО
	REF IN	YES	NO	YES
	PPS IN	NO	NO	YES
	External Clock Synchronization	Frequency only	NO	Frequency and time
	REF OUT	YES	YES	YES
	PPS OUT	YES	YES	YES
Software	PPP for seismic	YES	NO	NO
	CGGTTS	NO	NO	YES
	ISMR	NO	YES	NO
	IQ Corr	NO	YES	NO

Application driven → different hardware & specific software features

24

PolaRx5TR

Timing specific specs:

- Code-carrier bias 0 by design
- Inter-frequency code bias <10 ns</p>
- Inter-system code bias in common carrier <2ns</p>
- Code measurements <0.5 ns</p>
- Phase measurements < 5 ps</p>
- PPS in delay calibration precision 20 ps

All PolaRx5 Family GNSS Receivers provide:

- Track all visible signals (GPS, GLONASS, GALILEO, BEIDOU, IRNSS, QZSS, SBAS)
- High-precision, low-noise measurements
- AIM Best in class interference monitoring and mitigation
- Low and scalable power consumption
- Powerful web interface and logging tools
- Logging up to 24 parallel data records both internally and to an external device

What Accuracy Can Be Achieved with PolaRx5TR?

Accuracy is dependent on the setup...

- Delays due to cable, antenna and receiver front-end require calibration
- Achieve ~1ns accuracy when all delays calibrated

 $X_{s,i}$: delay in antenna for signal i $X_{R,i}$: delay in RF section of receiver for signal i X_c : delay in RF cable (including amplifier and splitter) X_p : delay in PPS cable

 X_o : delay between PPS IN connector and internal receiver time reference ($X_o = 0$ on PolaRx5TR when auto-calibration is enabled)

AsteRx-m2 - Key Features

- Best-in-class reliable and scalable position accuracy
- ())((
- Clock synch functionality = Time synch + frequency synch
- AIM+ unique interference monitoring and mitigation system

Industry-leading ultra-low power consumption

All-in-view satellite tracking: multi-constellation, multi-frequency

Easy to integrate

AsteRx-m2 Features

- Multi-Constellation / Multi-Frequency
 - GPS L1CA, L1P, L2P, L2C, L5, L1C ready
 - GLO L1CA, L2CA, L3
 - BDS B1, B2
 - GAL E1BC, E5a, E5b, E5AltBOC
 - QZSS L1CA, L2C, L5, L1C ready
 - IRNSS L5
 - SBAS L1, L5
 - 2-channel L-band Terrastar services
- Powerful GNSS capabilities
 - Interference monitoring and mitigation
 - Low latency
 - Up to 100Hz RTK
- Footprint and connectivity backward compatible with AsteRx-m
 - USB device
 - 3 TTL UART
 - PPS out, event marker
 - 1 SDIO (for SD card logging)

CLOCK SYNC = FREQ SYNC + TIME SYNC

Freq Sync

Connecting an accurate 10 MHz reference enqbles your receiver to keep the time accurately

> Time Sync

Sending a time-adjust signal sets the time right after each power cycle

