

Ole Ørpen, Rune Strandli, Javier Tegedor presented by Dr. Lee Ott Fugro Satellite Positioning

- Background
- Galileo
- BeiDou
- Performance examples
- Use of Multi GNSS systems

PPP Services are used by Professional High End Users

Orbit & clock Precise Point Positioning (PPP)

III

- Using more accurate orbits than broadcast ephemeris and very precise real-time satellite clock corrections for world wide coverage
- Using carrier phase dual-frequency measurements to get decimeter accuracy

Use

Differential GNSS

Ionosphere

Troposphere

Reference Station

3

Fugro Precise Point Positioning services

- Fugro launched in 2009 the G2 service using GPS and GLONASS:
 - Proprietary worldwide tracking network
 - Real-time estimation of orbits/clocks
 - Broadcast corrections using GEO satellites
 - Maritime professional users
 - Highly redundant service
 - Decimeter level accuracy
- Following GNSS evolution, new services have been introduced in Q1 2015:
 - G2+: ambiguity-fixed PPP
 - G4: addition of BeiDou and Galileo

- Background
- Galileo
- BeiDou
- Performance examples
- Use of Multi GNSS systems

Fugro's first Galileo Only Positioning, 18 March 2013

- Four IOV satellites used in Precise Point Positioning (PPP) at 10 cm level
- Fugro generated high accuracy Galileo orbit/clock data using Fugro's tracking network

Fugro tracking network in March 2013, yellow means Galileo capable stations

Galileo current status

- G4 system has been qualified for Galileo
- No Galileo corrections delivered to customers yet
- Galileo will be added to G4 when operational (Early Services 2016)

Satellite	PRN	Launch	Status
IOV PFM	E11	Oct 2011	OK
IOV FM2	E12	Oct 2011	OK
IOV FM3	E19	Oct 2012	OK
IOV FM4	E20	Oct 2012	Only transmitting in E1
FOC FM1	E18	Aug 2014	Non-nominal orbit
FOC FM2	E14	Aug 2014	Non-nominal orbit
FOC FM3	E22	Mar 2015	Under commissioning
FOC FM4	E26	Mar 2015	Under commissioning

- Background
- Galileo
- BeiDou
- Performance examples
- Use of Multi GNSS systems

- Regional coverage in Asia
 - 3 MEO (Medium Earth Orbit)
 - 5 IGSO (Inclined Geosynchronous Orbit)
 - 5 GEO (Geostationary Orbit)
- Full worldwide Coverage (30 satellites) by 2020
- First BeiDou-3 satellite launched on March 31st

Regional coverage in Asia

60

40

20

0

-20

-40

-60

- 3 MEO (Medium Earth Orbit)
- 5 IGSO (Inclined Geosynchronous Orbit)
- 5 GEO (Geostationary Orbit)

-150°

- Full worldwide Coverage (30 satellites) by 2020
- First BeiDou-3 satellite launched on March 31st

-180°

-150

-120

-90

-60

-30

90

120°

150

40

20

20

40

- Regional coverage in Asia
 - 3 MEO (Medium Earth Orbit)
 - 5 IGSO (Inclined Geosynchronous Orbit)
 - 5 GEO (Geostationary Orbit)
- Full worldwide Coverage (30 satellites) by 2020
- First BeiDou-3 satellite launched on March 31st

- Regional coverage in Asia
 - 3 MEO (Medium Earth Orbit)
 - 5 IGSO (Inclined Geosynchronous Orbit)
 - 5 GEO (Geostationary Orbit)
- Full worldwide Coverage (30 satellites) by 2020
- First BeiDou-3 satellite launched on March 31st

Examples of BeiDou Coverage 14 October 2015

GNSS planning: <u>http://www.trimble.com/gnssplanningonline/#/Settings</u>

Challenges for BeiDou PPP

fugro

- Challenges for precise orbit determination
 - Geometry
 - Orbit determination for GEOs is particularly challenging due to the static position with respect to the reference station network
 - Satellite attitude:
 - Orbit normal mode used by GEOs

BeiDou, Approved by IMO for use at Sea

- BeiDou has gained approved for use at sea by the International Maritime Organzation (IMO)
- Third IMO approved system after GPS and GLONASS

IMO Marine Safety Committe (MSC) has during its 94th session 17-21 Nov. 2014:

recognized the BeiDou Navigation
Satellite System (BDS), operated by
China, as a component of the World Wide Radionavigation System (WWRNS)

http://issuu.com/imo-news/docs/24494_imo-news-01-15__6/1 (page 18)

- Background
- Galileo
- BeiDou
- Performance examples
- Use of Multi GNSS systems

Precise Point Positioning using only BeiDou – Perth (Australia)

- The use of GEO satellites in the G4 service allows you to obtain 24/7 PPP using only BeiDou
- Very good horizontal accuracy (<10cm)
- Vertical accuracy is a bit more variable due to GEO orbit errors

UGRO

Satellite visibility from Oslo 31 July 2015

UTC: Latitude:	2015-Jul-31 07:35:17 059° 55 117' N
Longitude:	010° 41.161' E
Height Above MSL:	37.35 m
SOG:	0 Kn
COG:	119°
Quality:	0
RAIM: Configure	●Safe(0.3m)
Accuracy of Solution:	
Position:	0.08 m
Height:	0.10 m
Position Type:	G4
Corr. Age:	14 s
HDOP:	0.6
G2/XP Expiration Date	2016-6-4 0:0:0
Expiration Date:	2016-6-4 0:0:0

Satellites used in solution:

 \mathbf{O}

G4 in Oslo 30-31 July 2015

Number of satellite and PDOP

- Background
- Galileo
- BeiDou
- Performance examples
- Use of Multi GNSS systems

Advantages of multi-constellation PPP

- Increased accuracy and reduced convergence time
- More robustness against:
 - Interference
 - Scintillations
 - Partial sky visibility
 - Spoofing
- Better RAIM protection (increased redundancy)

RAIM: Receiver Autonomous Integrity Monitoring

fugro

Possible future Multi-GNSS Integration

- When Galileo and BeiDou are fully deployed, new positioning scenarios can be envisaged:
 - Deliver two independent solutions
 - Independent GNSS's and independent corrections
 - Independent of single-system failure
 - Integrity detection is possible by checking the two positions

Conclusions

- BeiDou has completed a constellation for regional 24 hour coverage in Asia.
 - 13 operational satellites
 - Coverage being extended worldwide (2020)
- Galileo moving towards Early Services (2016)
- Fugro introduced the G4 service with BeiDou in Feb. 2015
- Additional GNSS provides an opportunity for improved performance
 - Higher accuracy, reliability and availability
 - Independent solutions

Thank you for your attention!

Lee Ott

Fugro Satellite Positioning, Inc. Houston, Texas

Mobile: 713-542-1918 Email: <u>L.Ott@Fugro.com</u> Website: <u>www.fugrosatellitepositioning.com</u>

