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Flood Hazard Background

Coastal flooding and coastal land loss reflect
combined effects of land subsidence and sea
level rise (SLR)

For next few decades, SLR is insignificant (3
mm/yr X 30 yrs = 9 cm) but subsidence effects
can be large (20 mm/yr x 30 yrs = 60 cm)

Example: New Orleans and Mississippi Delta —
high land subsidence rates

On longer time scales, SLR will become
significant

Greenland likely to be significant contributor to
SLR over next 100 years



Cost ($ Billion US)

Cost of Hazards
US Domestic, insured + uninsured
(most are flood-related)
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What causes low elevation and flooding In
New Orleans?

Subsidence: combination of effects, exacerbated by
anthropogenic intervention in natural system

All deltas subside, but natural sedimentation patterns
replenish topmost layer, maintaining height near sea
level; Levees restrict natural sedimentation

Would be useful to know quantitative contributions of
various subsidence processes

Measuring spatial patterns of subsidence can help
distinguish causes



Causes of subsidence

« Sediment loading

« Sediment compaction,
dessication, oxidation

* Fluid withdrawal:
(water; oil and gas
production)
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Main Cause of Low Elevation in New Orleans

« Oxidation & sediment compaction — exponential
processes

« Some parts of city currently lie >3 m below sea level

« Assume they were at or near sea level before
construction of levees

and marsh drainage
(~1860 AD) began
process of oxidation,
sediment compaction.

Sub rates
>20 mml/yr

Sub rates
few mm/yr |
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Active Tectonics May Also Play a Role

*Mississippi Delta slides on several listric
normal faults towards Gulf of Mexico

7 *Weak salt layer acts as decollement
e ' *Mainly horizontal motion
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Causes of Delta Subsidence

 Unlike New Orleans, oxidation should
not be significant

« Compaction of Holocene sediments
(1-2 mm/yr?)

 Mass loading of delta (lvins et al.
2007) (3-6 mm/yr) predicts simple

pattern observed
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Causes of Horizontal Motion

e Southward motion at ~0.5 mm/yr reflects
sliding of Miss. Delta block on deep, salt-
related decollement

 Recent & Holocene mass loading of delta
may play arole

e Growth normal faults are active






GRACE‘ Results, 2002-2011
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Importance of Glacial Isostatic Adjustment
(GIA)

* GIA reflects long term response of
mantle to crustal unloading after Last
Glacial Maximum (LGM) ~ 20,000 years
ago

 GRACE sensitive to GIA model

* GIA models depend on:
— Mantle viscosity structure (poorly known)
— lIce melting history (very poorly known)



What is relation of GIA to present uplift

signal from anthropogenic warming?
In principle, can use isostasy to infer ice
melting rate (loss of Greenland ice results in
uplift)

Problems

> Impact of past events is significant (visco-elastic
response from LGM)

> mantle viscosity limit present-day response

GIlA Is both a potential tool for ice melt studies,
and a noise source

GPS can help constrain GIA, and measure
present mass loss directly



Glacial Isostatic Adjustment in
North America observed with G
*Shows long term response t
melting since LGM
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GIA
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Time series of GPS vertical component position estimates for Greenland
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Annual Signal

= Elastic response implies uplift
sensitive to seasonal melting

= Can be used to compare annual variations,
Investigate details of acceleration at
Individual sites

= Losses occur during short summer melt
season



kaga: Time series of GPS vertical component position estimates for Greenland
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Summary

High precision GPS can monitor geologic and
anthropogenic deformation processes in Gulf coast,
and details of Greenland melting

1-2 mm precision in vertical component

Subsidence of Miss. Delta and New Orleans levees
continues, increasing future flood potential

Subsidence “budget” still unclear (what are various
sources?)

Miss. Delta moves south at ~0.5 mm/yr, probably
related to listric faults that exploit ductile salt at depth

Greenland melting is accelerating. Now contributes ~ 1
mm/yr to global sea level rise budget.



