

Galileo IOV System Time Status

Drs. J. Hahn, A. Mudrak ESA Galileo Project

CGSIC 53rd Meeting, 16 Sep. 2013, Nashville, Tennessee

European Space Agency

Navigation solutions powered by Europe

User Performance	Specification
Frequency Accuracy (expressed as a normalised frequency offset relative to UTC, 2 sigma, over any 24 h interval)	< 3 x 10 ⁻¹³
User UTC determination uncertainty (2 sigma)	< 30 ns

Galileo System Time (GST) shall be a continuous co-ordinate time scale in a geocentric reference frame, steered towards the UTC modulo 1 second.

GST start epoch: 00:00 on Sunday August 22nd 1999 (midnight between August 21st and 22nd). At the start epoch, GST shall be ahead of UTC by thirteen (13) leap seconds.

GST-UTC = 16 s (as of 01/07/2012)

GST format as broadcast in the satellite navigation message Week Number (WN)

Seconds of Week

GST and GPSTime:

GST-UTC = GPST-UTC
WN(GST) = WN(GPSTime, w. roll-over) - 1024
Seconds of Week (GST) = Seconds of Week (GPSTime)

Galileo System Time vs. UTC mod 1 sec

Ravigation solutions powered by Europe

due to delay in UTC estimation (1.5 months)

not to scale

Galileo vs. BIPM, USNO, GPS

GALLEO BORNOS Navigation solutions powered by Europe

PTF in Galileo Control Center (Fucino)

Ren Solutions powered by Europe

Controlled environment (+/- 0.1°C)

Computer room

September 16, 2013

UTC(k) and UTCpredicted vs. GST (MC) Early Results

The plot shows daily average of GST(MC) offset to the national real-time realizations of UTC, named UTC(k). The offset UTC(k)-GST(MC) is measured using TWTFT and GPS CV techniques. The real time approximation of UTC named UTCapprox is the average of the five UTC(k)'s predicted vs UTC.

UTC-GST(MC) Time and Freq. Offset Early Results

Rene Bene Services

 UTC-GST(MC) offset is evaluated monthly using BIPM Circular T

.

The period of the IOV campaign is highlighted with the blue shaded area

UTC-GST(MC) Prediction Error Early Results

GALLEO BCN SS Navigation solutions powered by Europe

GST vs. UTC (modulo 1 second) prediction accuracy

- TVF daily evaluates a prediction value for UTC-GST(MC) time offset. The prediction is broadcast in the Galileo navigation message.
- The UTC-GST(MC) prediction error is evaluated by TVF monthly when CircularT is available.
- Through-out the IOV campaign, UTC-GST(MC) prediction error remains within +/- 5 ns

http://www.esa.int/Our_Activities/Galileo http://ec.europa.eu/galileo