

Global Positioning Systems Directorate

GPS Program Update to Civil GPS Service Interface Committee (CGSIC)

18 Sep 2012

Col Bernie Gruber
Director
GPS Directorate

Global Positioning Systems Directorate

Mission:

Acquire, deliver and sustain reliable GPS capabilities to America's warfighters, our allies, and civil users

Col Bernie Gruber

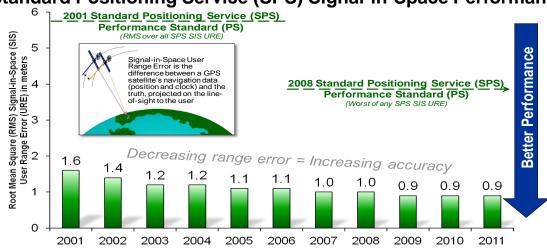
Deliver and sustain Global Navigation and Timing Service

GPS Program Partnership

- Civil representatives integral members of GPS team
 - Resident in the GPS Directorate DOT (1), FAA (1), NASA (½)
- Support program, Interface Control Document and Specification reviews
 - Civil GPS Service Interface Committee (CGSIC)
 - Signal Monitoring Working Group (SMWG)
 - Interface Control Working Group (ICWG)
 - L1C Product Implementation Teams
 - Positioning Signal Integrity and Continuity Assurance (PSICA) Team
 - Interagency Forum for Operational Requirements (IFOR)
 - National Space-Based PNT Engineering Forum (NPEF)
 - Nation Space-Based Coordination Office (NCO)

GPS Constellation

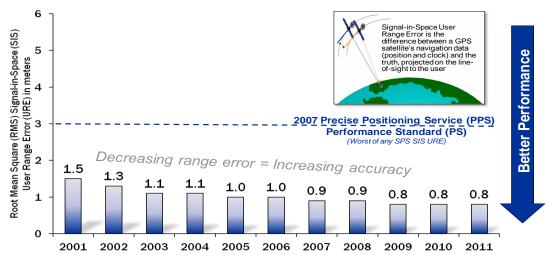
Robust constellation


- 31 space vehicles currently in operation
 - 10 GPS IIA, 12 GPS IIR, 7 GPS IIR-M, 2 GPS IIF
- 3 additional satellites in residual status
- Extensive International and Civil Cooperation
 - Agreements with 55 international customers
 - 1 billion civil/commercial users
 - Countless applications...and growing
- Global GPS civil service performance commitment met continuously since Dec 1993

GPS Signal in Space Performance

Standard Positioning Service (SPS) Signal-in-Space Performance

Precision Agriculture



Wildlife Research

Aviation

Precise Positioning Service (PPS) Signal-in-Space Performance

Precision Navigation

System accuracy exceeds published standard

GPS IIF Status

Launched GPS IIF-2 on 16 Jul 11

- Satellite Vehicle Number 63, PRN 1
- Set healthy 14 Oct 11
- Second operational L5 signal
- Providing enhanced GPS clock performance

2 total GPS IIFs on orbit

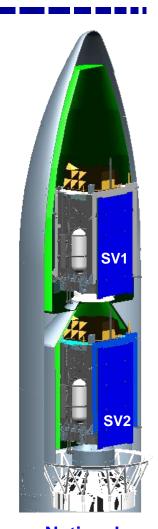
- Best accuracies in constellation (0.38 m RMS)
- Demonstrated Flex Power capability

10 more GPS IIFs in the pipeline

- SVs 5-7 are in storage
- SVs 3, 8 and 9 in assembly, integration and test
- On-track to complete all production by Summer 2013
- Next GPS IIF Launch scheduled for 4 Oct 12

Newest block of GPS satellites

- First satellite to broadcast common L1C signal
- Multiple civil and military signals;
 L1 C/A, L1 P(Y), L1M, L1C, L2C,
 L2 P(Y), L2M, L5
- Three Rubidium clocks
- SV01 initial power turn-on 1QFY13
- GPS Processing Facility (GPF) ribbon cutting
- GPS Satellite Simulation delivered
- Factory to Factory link established June 2012



Enabling Affordability

Dual launch of GPS III satellites significantly reduces launch costs

- GPS and Launch Directorates are coordinating on final requirements for a GPS-specific dual payload adapter and mission profile requirements
- Early studies indicate only minor changes needed to support this capability, with minimal changes in the production line of GPS III SV09+
- Future Size, Weight, Power (SWAP) considerations
 - Battery & Solar Array Efficiency, Star Tracker/IMU, etc...
 - Allows SV-9+ payload considerations
 - SAR GPS, Laser Reflectors, USB

Notional
Dual Launch
Configuration on
Atlas V 551

Ground Segment Status

Current system Operational Control Segment (OCS)

- Now flying GPS IIA/IIR/IIR-M/IIF constellation
- Added the capability for anomaly resolution & disposal ops for GPS IIF
- AEP 5.8 deployed Mar 2012, preceded by strategic communication plan and test
 - Additional automation and SAASM support
 - Deployed successfully without negative impact to users

Monitor Station

Next Generation Operational Control System (OCX) on track

- Exercise 1 completed on schedule, passed telemetry & commands
- OCX Block I full operational capability planned for 2016
- Will provide full support of monitoring of L2C and L5

Ground Antenna

OCX affordability initiative:

- Resulted in some requirements rescoping and rephasing
- Accelerated modernized civil signals
- Supports L2C and L5 in OCX Block I, Oct 2016

GPS Modernization - New Civil Signals

Second civil signal "L2C"

- Designed to meet commercial needs
- Available since 2005 without data message
- Phased roll-out of CNAV message
- Currently 9 SVs in operation

Third civil signal "L5"

- Designed to meet transportation safety-of-life requirements
- Uses Aeronautical Radio Navigation Service band
- Currently 2 SVs in operation

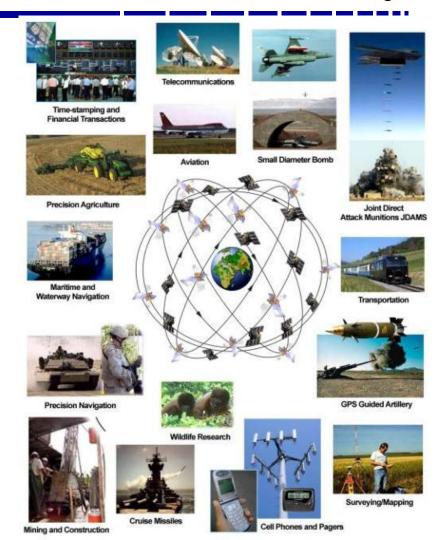
Fourth civil signal "L1C"

- Designed for GNSS interoperability
- Specification developed in cooperation with industry
- Launches with GPS III in 2015
- Improved tracking performance

Improved performance in challenged environments

Urban Canyons

Early CNAV test capability currently in development

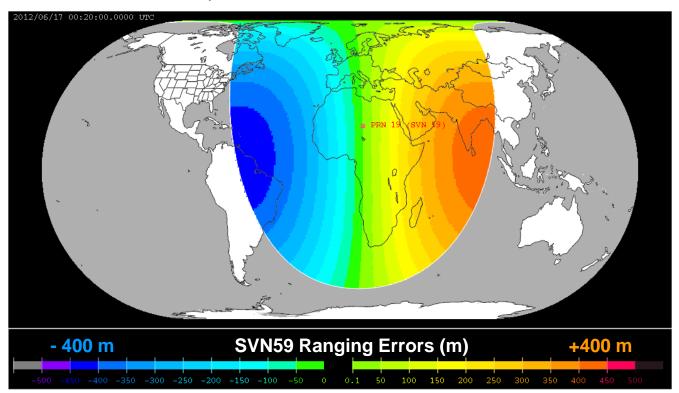

US Gov't Committed to Civil Signals

- The modernized civil signal deployment is in progress
 - 10 L2C and 2 L5 capable SVs on orbit
 - OCX will implement full command & control of L2C & L5
 - Expect the 1st L1C SV launch in 2015
- Intend to maintain semi-codeless phase relationships until 31 Dec 20
 - Documented in Federal Register Notice Vol. 73, No. 185 (Ref. 31) 23 Sep 08
- Semi-codeless users should start transitioning to L2C
 - Most high-precision manufacturers already offer L2C capable receivers
 - Significant benefits available now
- Complete civil signal constellation implementation limited by:
 - Constellation health currently enjoy a robust combination of legacy signals
 - Launch opportunities acceleration possible with dual launch of GPS III

Summary

- GPS has continuously met its commitments to all users
- GPS had multiple operational and acquisition successes in the past year
- Modernization of all GPS Segments is on track
- Striving to continually improve navigation and timing services while maintaining backward compatibility with legacy equipment

Homepage for General Public



Backup

17 Jun 12 SVN 59 Integrity Failure

- Large broadcast ephemeris error (>1,900 m) from SVN59/PRN19
 - 17 Jun 12, 0009-0037 GPS Time
 - First SPS PS integrity failure since 22 Feb 10
- Caused by SVN 59 upload with invalid Earth orientation data
 - Fixed by second upload with valid data after 28 minutes
 - Remedial actions taken to prevent reoccurrence

Other Recent Anomaly Investigations

- Alcatel-Lucent timing receiver events, Jun 2012
 - Large timing errors from some cell tower timing receivers
 - Several hypotheses formulated, none confirmed
 - No recent reports of reoccurrence from Alcatel-Lucent
- SVN45/PRN21 phase jumps, May 2012
 - Short-duration phase jumps reported by Fugro (e.g., Omnistar)
 - Same symptoms reported by FAA WAAS network
 - Root cause still TBD

New Certification Paradigm

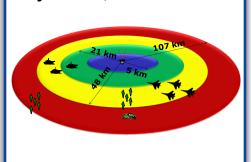
- 2009/10 receiver problems experienced during segment upgrades
 - Problems traced to non-ICD compliant User Equipment
 - Incorrect implementation/interpretation of interface specifications
- DoD "Performance Certification" strategy
 - GPS Directorate will provide Constellation Simulator Test Vectors to selected receiver manufacturers to efficiently verify Signal-in-Space ICD compliance
 - The receiver manufacturer will be asked to self-certify that their receiver was tested and is compatible with the Test Vectors
 - GPS Directorate does not plan to independently review manufacturers test plans or results, but may choose to do so in selected cases in the future
 - Initial application will be limited to confirming Military-user compatibility for newlyprocured P(Y)-M-C/A receivers
- Implementing actions
 - Developing policy guidance recommendations for DoD
 - Developing implementation guidance document for GPS Directorate
 - Developing model contract language for future contracts
 - Developing Constellation Simulator Test Vectors

ICD Compliance is Critical for GPS Modernization

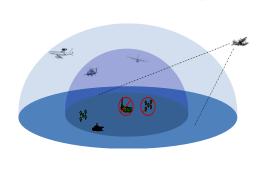
Modernized Military GPS Capability Features


Key Management Reduced burdens, Improved user autonomy

Jamming Resistance Initial fix enhanced, Anti-Jam extended


Anti-Spoof

Detect and reject false signals


M-Code Power

Operate closer to jammer, under trees

Blue Force Electronic Attack

Operate near friendly jamming

M-Code Cryptography

More secure, more flexible

External Augmentations

Extend GPS accuracy/ availability in challenged environments

Performance Standard Update

- Developing update to SPS and PPS Performance Standard
 - Adding L2C signal to current L1 C/A signal
 - Same performance values
 - Draft update will be circulated for review & comment within U.S. Government (30 Sep 12)
 - SPS PS update approval before Initial Operational Capability (IOC) declaration for L2C
- Planning subsequent draft updates for L5 signal & for L1C signal
 - Prior to each subsequent IOC declaration
- Developing an updated set of performance metrics
 - Include different user applications and terrain environments