

Geospatial Positioning at Oregon DOT

Ken Bays, PLS Lead Geodetic Surveyor Oregon Dept. of Transportation

Civil GPS Service Interface Committee U.S. States & Local Government Session 17 September 2012

Oregon DOT Geometronics Unit

Oregon DOT Geometronics Unit

Overview of ODOT Updates

- Oregon Coordinate Reference System
- Oregon Real-time GPS Network
 - Oregon DOT transition to NAD83(2011)(Epoch 2010.00
- Moving towards Engineering Automation
- LIDAR Scanning

Oregon Coordinate Reference System (OCRS)

Distortion Due to Elevation

Distortion Due to Elevation

Problems with SPC System

- Does not represent ground distances
- Does not minimize distortion over large areas
- Does not support modern surveying accuracy requirements

OCRS Update

- 20 zones created in Oregon
- Enabling legislation passed by Oregon State Legislature
- On-line OCRS Tool has been developed
- Several software manufacturers have added the OCRS zones in their coordinate system managers

Oregon Real-time GPS Network

- Update to NAD83(2011)Epoch 2010.00
 - Plan developed
 - NGS Guidelines for Real Time Networks/ possible
 "certification
 - OPUS-Projects Least Squares Adjustment
 - Fix "computed" CORS in and surrounding Oregon
 - User Support for epoch change:
 - Fiducial passive marks for users
 - ♦ Oregon State U: NAD83 Epoch Converter

http://www.ngs.noaa.gov/PUBS_LIB/NGS.RTN.Public.v2.0.pdf

Major Elements of ODOT's Plan

- Process/Adjust with NGS OPUS Projects online
- Pick NGS MYCS sites to fix in adjustment
 - All are "computed sites" with at least 2 1/2 years of data
 - ◆ Versus "**modeled sites**" with less than 2 ½ years of data.
- Use 5 days of data during high pressure period over the state
- Check adjustment with other least squares software
- A minimum of 10% of the stations in the ORGN will be NGS CORS
- Site standards meet NGS CORS requirements
- Test final coordinates using ORGN real-time correctors
- Provide <u>fiducial</u> points on passive control that users of ORGN realtime correctors can check in to.
- Provide user support to ease changeover

OPUS-Projects (OP)

- A valuable addition to the NGS OPUS suite
- Currently in beta format
 - Has integrated Epoch 2010.00 positions for CORS
 - Has integrated ANTEX IGS08 antenna calibrations
- OP Provides:
 - Uploading of GPS data via the OPUS portal
 - Processing baselines via NGS PAGES software
 - Least squares adjustment of data via GPSCOM software
 - Google Earth-based map view of project and baselines
 - Improved positioning over OPUS-Static averaging of single base line positions
- Software author: Dr. Mark Schenewerk, NGS

Oregon Data Conversion Tool

Oregon Data Conversion Tool

_ 0 NAD83CORS conversion - [Data Viewer] 🔃 File View Controls Help - 5 > ₽× æ > Input Parameters Display Controls Model Display Input Point File (*.txt, *.csv) Reset Display 1 . 08.011 Points C:/programs/n83cors-build-desktop/mytestdata - Copy.csv Vector Length Mult Output 1500 Mode: 1 = NAD83CORS96 -> NAD83CORS96a **Display Optimization** -> Convert! Culling Output Information ₽× Data Gen P386 From: -118.968 44.4028 1103.97 To: -118.968 44.4029 1103.95 * Show Ref Data P390 From: -118.928 43.034 1555.36 To: -118.928 43.034 1555.37 Red P391 From: -118.412 42.2546 1834.23 To: -118.412 42.2547 1834.23 P022 From: -118.014 45.2318 888.118 To: -118.014 45.2318 888.114 ☑ Label Points P393 From: -117.892 43.2345 1238.85 To: -117.892 43.2345 1238.85 BURN From: -117.844 42.7795 1180.91 To: -117.843 42.7794 1180.93 P394 From: -117.8 44.8349 1011.2 To: -117.8 44.8348 1011.19 Show Proc Data P739 From: -117.726 42.0201 1378 To: -117.726 42.0202 1378.01 Blue P013 From: -117.33 41.4287 1433.99 To: -117.33 41.4286 1433.99 P372 From: -117,252 45,4281 1208,31 To: -117,252 45,4282 1208,32 P018 From: -117.065 42.9817 1434 To: -117.065 42.9817 1433.98 ☑ Label Points Completed in 328 ms. mp10 Show Base Map V Draw Triangles Black Light Control ₽ × Position : 0.00 Shift between datum 0.00 mp2 realizations shown at 0.00 Z: each CORS--(exaggerated distance)

What the "Tool" will do:

Converts users positions back and forth from:

- NAD 83 (CORS96) Epoch2002.00

to/from

- NAD 83 (2011) Epoch2010.00

Who is developing the "Tool"

- Michael Olsen, Assistant Professor of Geomatics, Oregon State University, is developing the mathematical algorithms and software.
- Cooperation, input, and assistance from:
 - Oregon DOT Geometronics Unit
 - Mark Armstrong, NGS State Geodetic Advisor for Oregon

Why do ORGN users in Oregon need this Tool?

- Will ensure continuity within projects

- User may keep a single datum realization for a project spaced over the change from the superseded to the new datum realization.
- Provides an immediate datum realization transition solution until user projects are solely within the new datum realization
- "Keep my phone from ringing off the hook!"
- Note: For surveying/enginnering accuracy, should perform an calibration/localization and not rely on this tool.

The CORS Position Delaunay Triangle Network

Oregon DOT is poised for field-to-finish automation:

- Surveying: pre-design & construction
- 3-D Digital Design: machine control ready
- 3-D Digital As-Builts
- Digital Signature technology & legislation
- Construction Administration

2010 Design to Dozer Demonstration Computer Controlled Heavy Equipment

Pre-design Survey

- Geodetic Control:
 - Oregon Real-time GPS Network
- Coordinate System:
 - Oregon Coordinate Reference System
- Digital signatures for Professional Filed Documents

3-D Design

3-D Design

Design input into heavy equipment

Computer Controlled Construction

Section of Sub-grade completed

Visualization of Paved Surface

 Engineering Automation, i.e., 3-D digital as-builts contribute to the enabling technology for "connected vehicle" highway safety programs.

LIDAR Use in Oregon

- Airborne
 - Fixed Wing (high altitude)
 - Helicopter (low altitude)
- Terrestrial
 - ♦ Static
 - ♦ Mobile

2007

Oregon Department of Transportation

Oregon Department of Transportation OLC DATA PRODUCTS

3 ft pixel bare earth DEM ESRI format (quad tiles)

3 ft pixel first return DEM ESRI format (quad tiles)

Report and metadata !!

1 ft pixel intensity images (tiled by $1/_{100}$ th quad)

Ground point density grid

Aircraft Trajectories and datestamped flightlines

AIRBORNE (FIXED WING)

- Find landslides, old cuts and grades
- Measure and estimate fills and cuts
- Find stream channels, measure gradients
- Measure the size and height of buildings, bridges
- Locate and measure every tree in the forest
- Characterize land cover
- Model floods, fire behavior
- Locate power lines and powerpoles
- Support archeological investigations
- Map wetlands and impervious surfaces
- Define watersheds and viewsheds
- Map road center and sidelines
- Find law enforcement targets
- Map landforms and soils
- Assess property remotely
- Monitor quarries, find abandoned mines
- Enhance any research that requires a detailed and accurate 2D or 3-D map

STATIC SCANNING

STATIC SCANNING

Captures the geometry of existing physical objects Allows Virtual Surveying in office Facilitates Solid **Object Modeling**

STATIC SCANNING

- 2-6mm accuracy
- Structures: inaccessible, unsafe, delicate
- Complex Geometry
- Fast Data Collection (thousands of points/sec)
- Extensive Detail
- Immediate Results

TYPICAL WORKFLOW

STATIC SCANNING

ACQUISITION

MODELING

2D / 3D CAD

STATIC USES Virtual Surveying Mapping Reverse engineering Non-contact inspection Structure analysis and testing Determine fit before shipping to site As-built surveys Historical archive

STATIC SCANNING PRODUCTS

STATIC SCANNING

STATIC SCANNING

STATIC SCANNING

STATIC SCANNING

MOBILE SCANNING DATA

MOBILE SCANNING TERRESTRIAL

fulogenat)

MOBILE SCANNING

- GPS Positioning
- Inertial Measurement Unit (IMU)
 - Roll
 - Pitch
 - Yaw
- Extremely Fast Data Collection (millions points/sec)

How it all works

IP-S2 uses data from various sensors to obtain an accurate position and or

recurry Pich

GNSS Receiver Delivers the Position Information to the System (Latitude, Longitude and Altitude) 40 Channel GPS L1/L2 & GLONASS L1/L2

IMU (Inertial Measurement Unit) Supplies Accurate Altitude Data for the System (Roll, Pitch and Heading information) Either 1°/hr or 3°/hr Gyro Bias

Vehicle Odometry Information is Obtained Via External Wheel Speed Sensors or From the Vehicle's CAN Bus (Used to estimate the velocity and position based off a known location)

MOBILE SCANNING USES

- Long Linear (from the road viewpoint) Mapping
- Virtual Surveying
- Asset Inventory & Management
 - Faster, safer than GPS handhelds in roadway
 - Approaches
 - Culverts
 - Signs
 - Guardrails

MOBILE SCANNING TERRE TRIAL

MOBILE SCANNING TERRESTRIAL

CURRENT LIMITATIONS AND OBSTACLES

LIMITATIONS AND OBSTACLES

- Massive Files
- Limited Lossless Compression
- Limited Data Transmission Bandwidth
- Lack of Standards
- Limited use in Civil Design Software

CAUTIONS

STAY CURRENT

- Low Maturity
- Hardware Ahead of Software
- Rapidly Changing

BE AWARE OF...

- Data Sources (often combined)
- Limitations
- Accuracies
- Coordinate Systems
- Metadata

Summary

- Status of the Oregon Coordinate Reference System
- Status of the Oregon Real-time GPS Reference Network's changeover to a NAD38(2011)Epoch 2002.00
- Status of the Engineering Automation Efforts
- Status of Mobile Scanning

Oregon Department of Transportation

Ken Bays Lead Geodetic Surveyor Oregon DOT 503-986-3543 kenneth.bays@odot.state.or.us

Oregon Real-time GPS Network www.TheORGN.net