Leap Seconds in Digital Networks

Judah Levine Time and Frequency Division NIST/Boulder Jlevine@boulder.nist.gov

Outline of the presentation

Why are leap seconds necessary?
How are leap seconds defined?
How do digital systems keep time?
How are leap seconds included?
Difficulties with current methods
Conclusions

Definition of Atomic Time

- Count cycles of frequency associated with a transition in cesium
 - 9,192,631,770 cycles = 1 s
- Cycle count chosen (13th CGPM, 1967) so that second was approximately continuous with previous astronomical definition
- Value was initially too small by about 3×10⁻⁸ relative to length of astronomical day at that time (UT1, 1967)

Atomic Time (UTC) vs. UT1

- Difference ~ 2.5 ms/day ≅ 0.9 s/year

 Significant variability difficult to predict

 Since 1972, discrepancy addressed by adding integer seconds to atomic time

 |UT1 UTC| ≤ 0.9 s
- Additional "leap second" is named 23:59:60, usually added at end of June or December
 - Physical clocks cannot display this time

Digital System Time Formats

Seconds (and fractions) since epoch

- Network Time Protocol uses 1900.0
- Other choices: 1970.0, 1980.0, 17 Nov.
 1858
- Time scale is almost always UTC
 - Direct comparison with other clocks
- Conversions done by applications
 - Local time zone, daylight saving time, ...
 - Display formats, ...

Realization of a leap second

Time tags during a positive leap second:

UTC

Day N23:59:58Day N23:59:59Day N23:59:60Day N+100:00:00

Realization of a leap second

Time tags during a positive leap second:

	UTC	TAI	TAI-UTC
Day N	23:59:58	Т	d
Day N	23:59:59	T+1s	d
Day N	23:59:60	T+2s	d+1
Day N+1 00:00:00		T+3s	d+1

Step Realization of a leap second Time tags during a positive leap second: UTC **Digital System** 23:59:58 Day N C (23:59:58)Day N 23:59:59 C+1s (23:59:59)Day N 23:59:60 C+1s (23:59:59)Day N+1 00:00:00 (00:00:00)C+2s

Time difference= (C+2) - C = 2 sPhysical elapsed time= 3 s

Step Method Difficulty - 1

- Step Method: Clocks are effectively stopped
- Time sequence is:
 - 23:59:59 .0, .1, ..., .8, .9, .0, .1, ..., .8, .9, ...

Step Method Difficulty - 2

- Time stamps can reverse time ordering of events and can violate causality: An event at 23:59:59.5 (#1) came before one at 23:59:59.4 (#2)
 Step in time interval (frequency) across leap second
- Physical processes do not stop
 - Navigation systems have problems

Slew Method (Google)

Time tags during a positive leap second UTC **Digital System Time** Day N: 23:58:00 23:58:00 Day N: 23:58:01 23:58:00.99 23:59:00 23:58:59.50 Day N: Day N: 23:59:60 23:59:59.01 Day N+1: 00:00:00 00:00:00

Slew Method Difficulty - 1

- Time is monotonic, causality preserved

 Significant time error for several minutes

 Smaller frequency error over longer time interval
 - Integrated time interval (frequency) the same as with step method

General Difficulties - 1

- Different implementations result in transient time and frequency offsets
- NTP phase-lock loop transient response
- Common systems do not recognize advance-notice flag or do not handle it correctly
 - No leap second, wrong sign, applied twice, applied late, ...
 - Errors fixed in one version re-appear in next upgrade

General Difficulties - 2

- Physical processes do not stop during leap second
 - Navigation systems cannot include leap seconds
 - Use "system time" for navigation
- Additional time scales introduction confusion
 - Time stamps and time intervals
- Leap seconds occur in the middle of the next day in Asia and Australia, near end of day in California, Hawaii, ...

If leap seconds were discontinued

UTC – UT1 would increase

- 1 minute after 100 years
- Uncertainty of UTC UT1 << 1 s</p>
- UTC no longer simple proxy for UT1
- Time stamps and time intervals would be less ambiguous
- Additional time scales no longer needed
 - GPS time, GLONASS time, Galileo time, ...

Conclusions

- Leap seconds intended to maintain small value of |UT1 – UTC|
- Implementation encourages other time scales and adds confusion
- Implementation produces ambiguity in time stamps and time intervals
- Will becomes more difficult as number of unsophisticated computer users who need accurate time increases
- Leap second frequency predicted to increase
 Problems will become more serious as this happens
- Advantage not worth the problems