

Global Positioning Systems Wing

GPSW Panel Session CGSIC 2010

21 September 2010

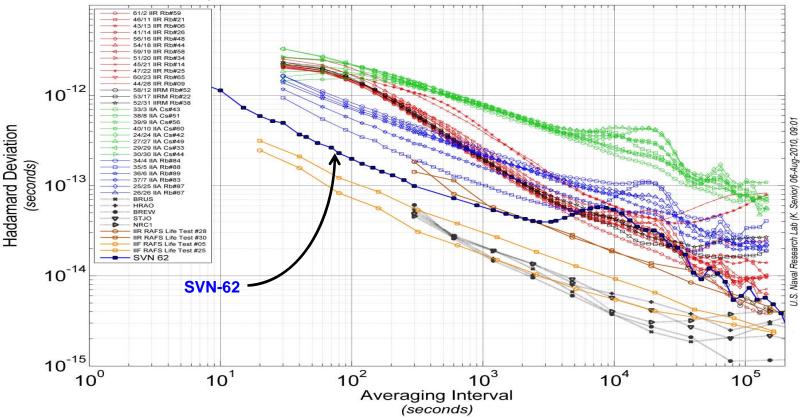
GPS Wing

2008 09 10 GPS Overview to ION

- SVN-62
- SVN-49
- Recent Lessons Learned
- Performance Standards

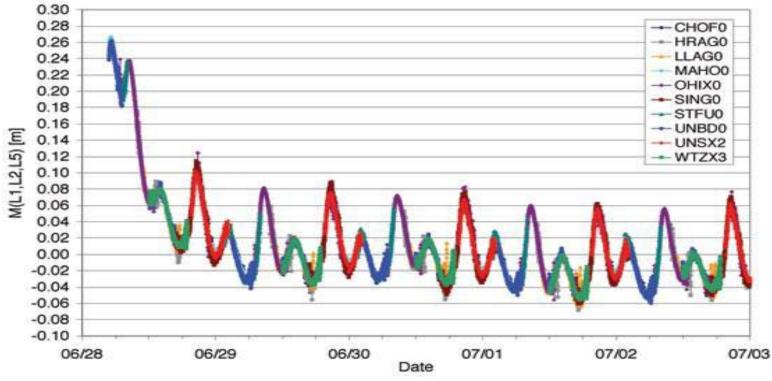
IIF-1 is SVN 62 and PRN-25

- Launched May 2010, set healthy August 2010
- Three SVN-62 signals characteristics have generated interest recently
 - Clock performance
 - L5 phase variation
 - L5 digital distortion
- L1 C/A, L1 P(Y), L2 P(Y) signals meet specs
 - Comply with the ISs/ICDs and the Performance Standards (PSs)

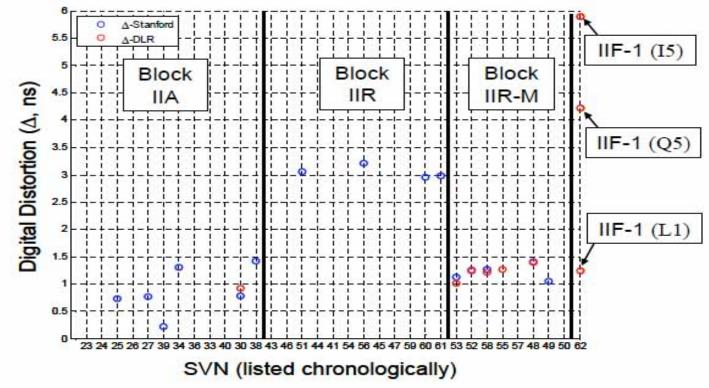

• L2C, L5, M-Code will meet specs with OCX

- OCX required for CNAV or MNAV data messages
- Modernized signal PSs will be published as signal IOCs approach
- No SVN-62/PRN-25 technical problems to prevent meeting specs

IIF-1 SVN-62/PRN-25 Clock

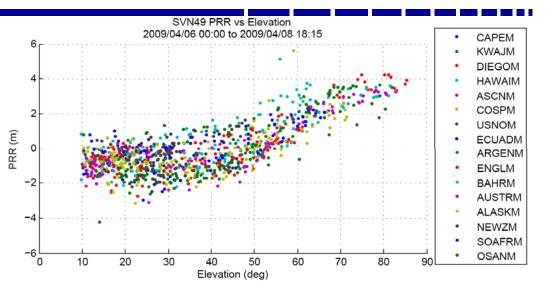

- Rubidium clock is among best ever seen
 - Stability of "apparent clock" affected by orbit-period harmonic errors
 - Similar effect seen with other high-stability satellite clocks
 - Expect clock stability to gradually improve
 - Further clock settling and updates to solar pressure model

SVN-62/PRN-25 L5 Carrier


- L5 carrier not as coherent as L1 and L2
 - L1/L2 carriers & all PRN codes are coherent with each other
 - L5 carrier is coherent with other signals within ± 0.06 m worst case
- Well within related GPS III specification value of ± 6.1 m worst case (FAA)

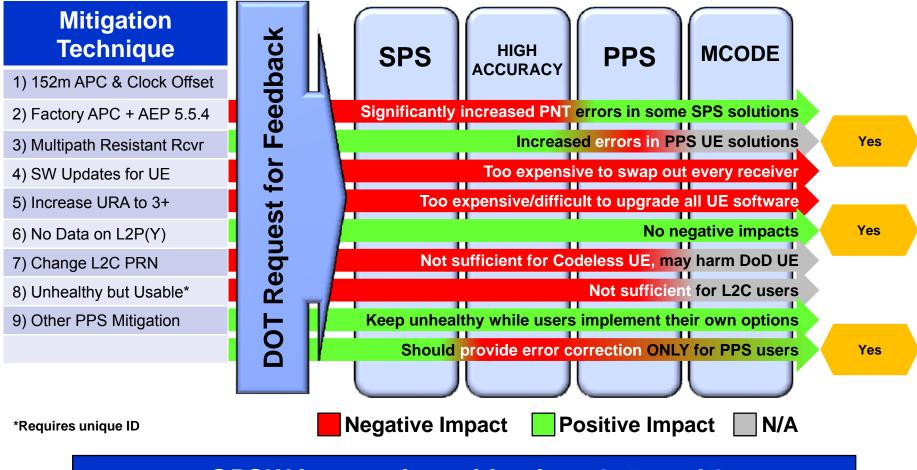
Plot from Montenbruck, Hauschild, Steigenberger, and Langley; "Three's the Challenge"; published by *GPS World*, 20 July 2010 **5**

- L5 codes are slightly more distorted than usual
 - The benchmark for "usual" is L1 C/A-code
 - L5 codes have a slight Δ values (+1 vs -1 chip duration mismatch)
- Well within related GPS III specification value of 10 nsec worst case (FAA)



Plot from Phelts, Gao, Wong, Heng, Walter, Enge, Erker, Thoelert, and Meurer; "Aviation Grade"; published by *Inside GNSS*, July/August 2016

SVN 49


- GPS IIR-20(M) (SVN 49) was launched 24 Mar 09
 - Navigation payload was modified to include an L5 demonstration payload
- Signal distortion observed during On-orbit check-out
 - At higher elevations, the user sees a 4m+ error from the navigation signal

- Improper installation of L5 payload determined as root cause of the anomaly
 - A small amount of L1/L2 energy is reflected from the L5 filter back into the antenna, creating a multipath effect as the delayed signal gets rebroadcast
 - SVN-49 does not meet spec with distortion (IS-GPS-200 3.3.1.4, "Spurious Transmissions")
- Vehicle currently "UNHEALTHY" to all users
 - GPSW and 50 SW are working to develop a way ahead that may allow setting SVN 49 "HEALTHY"

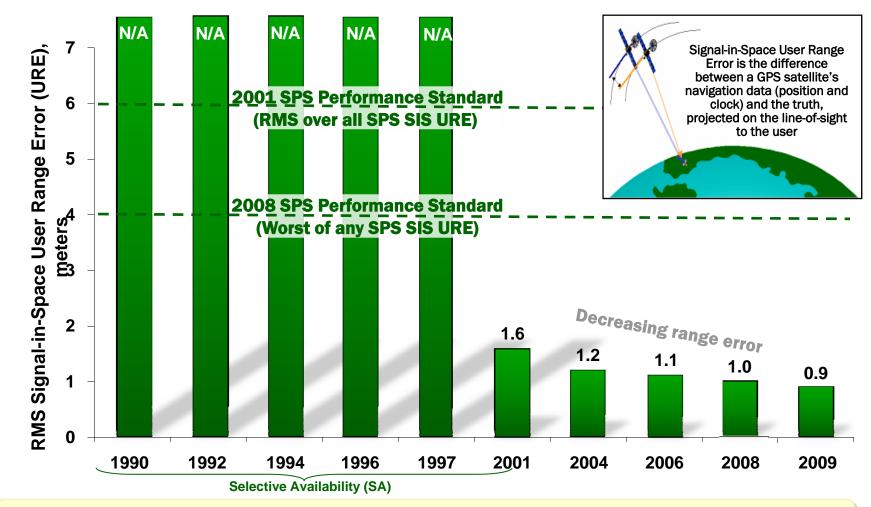
Mitigation techniques and response of stakeholders

GPSW is pursuing mitigations 2, 5, and 9 Receiver vendors are encouraged to pursue 3 and 4

- SVN 49 accomplished L5 demo successfully but caused signal distortion
- Distortion can be mitigated sufficiently to make SVN 49 useful
 - Some mitigations feasible from Space and Ground Segments
 - Others needed from User Segment
- Cannot make SVN 49 compliant with ICD-200
 - Should not be included in availability predictions
- Provide 3-4 years to prepare for setting SVN 49 healthy
 - Kalman Filter upgrade in AEP 5.5.4 & eventually for OCX
 - URA increase to 3+
 - PPS user mitigation
 - Other user mitigations
 - Updates to performance standards for SVN 49 (IS-GPS-200, 700, 705)
- Set SVN 49 healthy after mitigations have been implemented and affected users have had time to prepare for it
 - Set it healthy sooner if total # of SVs drops to <24 or if constellation needs demand it

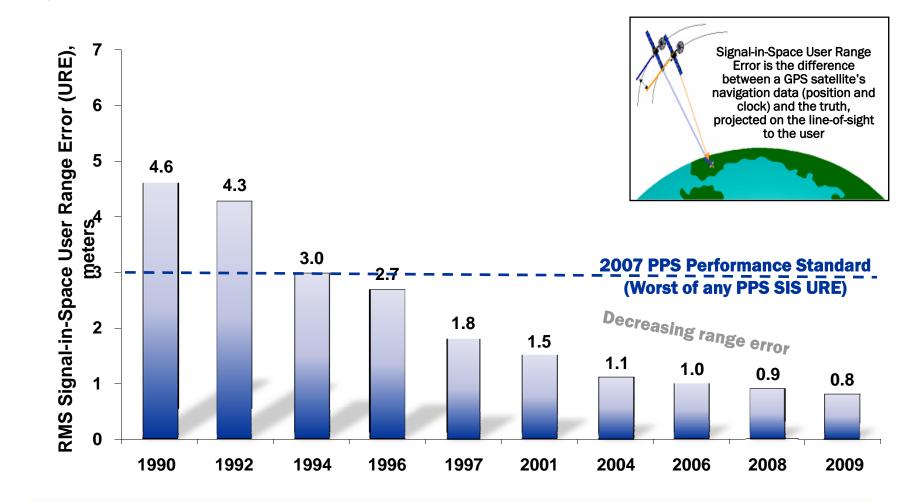
Striving to Maximize Usefulness of SVN 49

- GPS receiver anomalies were reported several times this year coinciding with testing activities
 - Almanac problem in Nov 2009, SAASM issue in Jan 2010, etc.
- Problems were traced to non-compliant UE

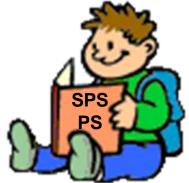


- Unauthorized use of reserved bits, incorrect assumption on almanac time, incorrect implementation/interpretation of SAAM function
- Problems mitigated by working extensively with UE vendors to fix non-compliance issues
- Resulted in delays to fielding of SAASM capabilities
- Improvements in compliance verification are being put in place

ICD Compliance is Critical for GNSS Success


SPS Signal in Space Performance

System accuracy exceeds published standard


PPS Signal in Space Performance

System accuracy exceeds published standard

- Planning a draft update of the SPS PS by Q1FY11
 - Name change to "Open Service Performance Standard" (OS PS)
 - Addition of L2C signal to current L1 C/A signal
 - Same performance values
 - Draft update will be circulated for review & comment within U.S.
 Government
 - SPS PS update approval before Initial Operational Capability (IOC) declaration for L2C
- Planning subsequent draft updates for L5 signal and for L1C signal
 - Prior to each subsequent IOC declaration
- Exploring new performance metrics
 - Different users and applications
 - Different environments

