

What's Going to Happen When High Precision GPS is Cheap?

Speaker: Eric Gakstatter

Contributing Editor – GPS World

Editor - Geospatial Solutions

Presented at: CGSIC USS&L Meeting Portland, OR September 20, 2010

Outline

- 1. High-precision GNSS technology in the next 10 years is going to advance significantly faster than the past 10 years.
- 2. Crowd-sourced data is scaling up and becoming more accurate.

High-precision GNSS technology in the next 10 years is going to advance significantly faster than the past 10 years.

High-Precision GNSS Technology

The Last 10 Years

The Last 10 Years

High-Precision GNSS Technology

Significant developments

- SBAS became operational.
- GLONASS matured.
- RTK Network proliferation.
- OPUS and OPUS-like online post-processing introduced.
- L2C introduced.

High-Precision GNSS Technology

The Next 10 Years

High-Precision GNSS Technology

- Complete L5 constellation (2018).
- Deployment of Europe's Galileo.
- Deployment of Russia's CDMA GLONASS
- Continued proliferation of RTK Networks.
- Continued proliferation of wireless networks.
- Complete L2C constellation (currently 8).

High-Precision GNSS Technology

- May 2010 marked a new era of GPS with the launch of the first GPS satellite equipped to broadcast L5.
- According to the USAF, a full constellation of 24 GPS satellites broadcasting L5 (and all legacy signals) will be in orbit by 2018.
- The "semicodeless sunset" date of Dec. 31, 2020 doesn't give the USAF much "wiggle" room on the 2018 schedule.

High-Precision GNSS Technology

- The new GPS L5 signal will result in very lowcost L1/L5 receivers capable of cm-level horizontal/vertical precision.
- High-precision GPS receivers will be available at a very low cost.
- Europe's Galileo could accelerate a full L5 constellation.

High-Precision GNSS Technology – Eng./Const./GIS service sector

- The value of high-precision data (horizontal and vertical) will reduce substantially.
- The skill and time required to collect highaccuracy data will fall substantially.
- Manpower requirements will shrink as productivity increases. Spending less on people and more on equipment
- Projects will be completed more quickly.

The Evolution of GPS Mapping Cost of recording a utility pole at sub-meter precision

 Year 2000 – \$10,000 GPS receiver. \$2,000 post-processing software. Days of training.

 Year 2010 - \$2,000 GPS receiver. Hours of training.

• <u>Year 2020</u> - \$100 GPS receiver. Minutes of training.

High-Precision GNSS Technology - Implemented

- GIS a data-hungry technology (infrastructure mapping, 3D mapping).
- Machine control. 23% CAGR over the next five years.
- Crowd-sourced data using mobile devices.
- Crowd-sourcing...

High-Precision GNSS Technology - Implemented

- TomTom Travel Times
- Road usage and speed pattern reports.
- Based on two trillion pieces representing 15 million miles of road data collected worldwide from TomTom users.

Trends

- Trending from measurement skills to data management and data analysis skills.
- Trending from relying solely on one's own geographic data to incorporating geographic data from external sources (eg. crowd-sourced data).
- Trending towards huge volumes of more precise and rich geographic data.

Eric Gakstatter

Contact Information:

egakstatter@gpsworld.com

Subscribe to Survey Scene and Geospatial Weekly Newsletters at www.gpsworld.com/newsletters

Subscribe to GPS World Magazine at www.gpsworld.com/subscribemag