

Global Positioning Systems Wing

GPS Program Update to 49th CGSIC Meeting

21 September 2009

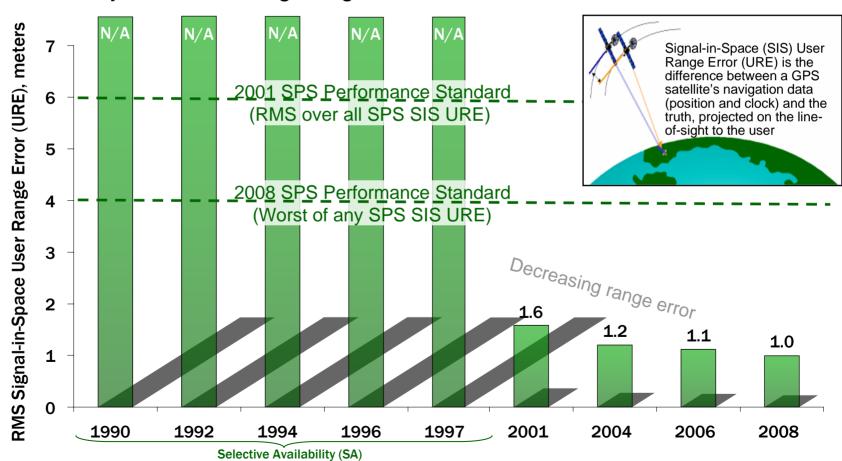
John Langer Technical Director GPS User Equipment Group

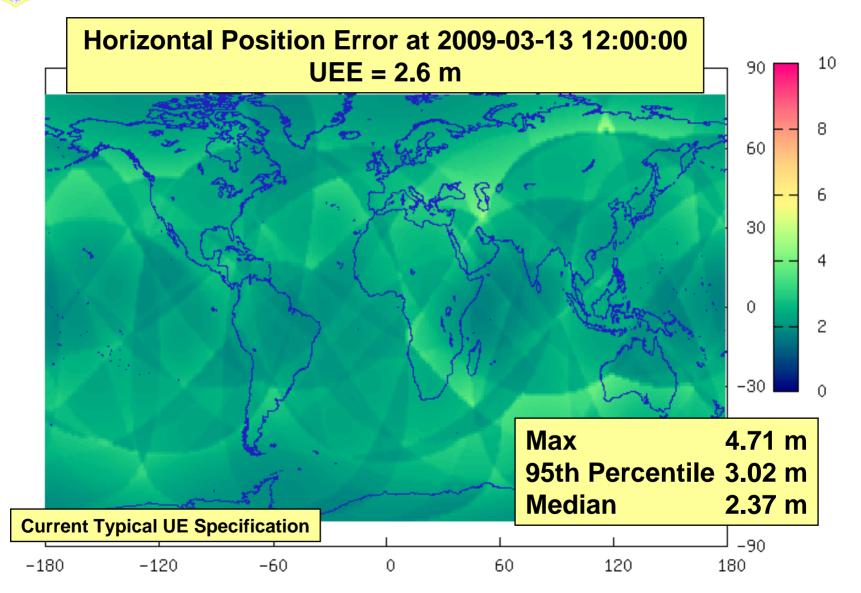
2009 09 21 GPSW Update CGSIC v2

- Constellation Status
- System Performance
- Recent Successes
- GPS Modernization
- International Cooperation
- Support to Civil Users
- Upcoming Events

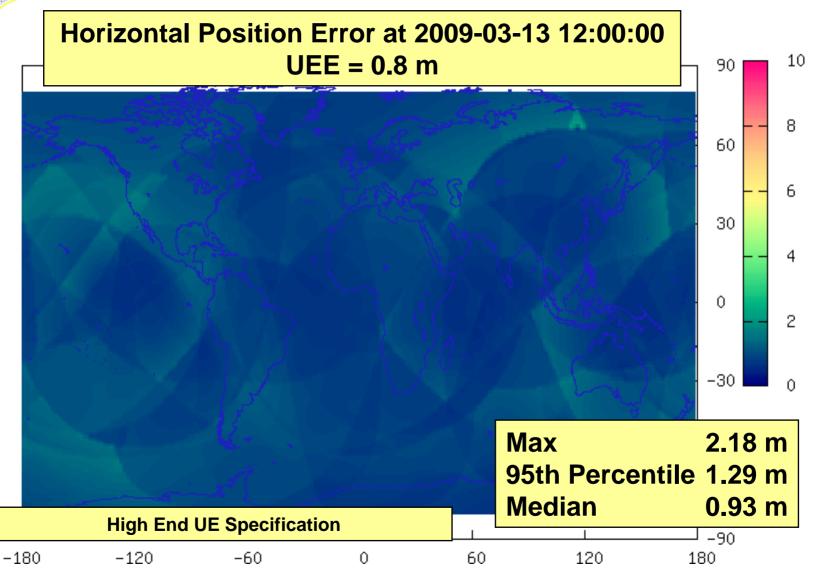
GPS Constellation

- Very robust constellation
 - 30 space vehicles currently set healthy
 - 11 GPS IIA
 - 12 GPS IIR
 - 7 GPS IIR-M
 - 1 GPS IIR-M waiting to be set healthy
 - 3 additional satellites in residual status
- Global GPS civil service performance commitment met continuously since December 1993




Current GPS Accuracy

- SPS Signal-in-Space (SIS) User Range error (URE)
 - One-year RMS through August 2009: 1.04 meters
- SPS Zero Age-of-Data (AOD) URE
 - One-year RMS through August 2009: 0.53 meters



Snapshot: Typical UE

Snapshot: High End UE

Space Segment

- SVN 49 launched in March 09
 - L5 demo payload secured frequency filing
 - Signal distortion investigation still underway
 - ION panel session Wednesday on SVN-49
- SVN 50 launched in August 09
 - · Set healthy
 - Completed GPS Delta II launches
- GPS IIF completed Pathfinder testing
- GPS IIF-1 completed thermal vacuum test & mission assurance review
- GPS IIIA completed Preliminary Design Reviews

Recent Successes (Cont'd)

Ground Segment

- Delivered new version of OCS (AEP 5.5) to final regression testing with SAASM capability
- Completed successful OCX, SDR, Modernized Capability Demo and RFP release

Recent Successes (Cont'd)

System

- Deploying L2C message Type 0 capability for GPS IIRM to support testing of civil UE testing
- Civil Monitoring Performance Specification (CMPS) 30 Apr 09
- L1C phase relationship configuration established
 - L1C components will be in phase with L1 P(Y)-code

IIF Pathfinder (May – Sep 2009)

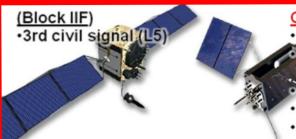
- IIF-2 shipped to Cape for risk mitigation
- All transport procedures proven successful
- All mechanical activities performed to plan and facility interfaces verified
- Consolidated System Testing checked all interfaces to OCS AEP and LADO
- Cut IIF-1 critical path to launch by 2 months and reduced schedule risk
- Best Practice for future GPS programs

GPS IIF Performance

Tech Performance Measure	Requirement	Current Status
L1 C/A User Rec. Pwr.	> -158.5 dBW	-156.9
L1 P(Y) User Rec. Pwr.	> -161.5 dBW	-159.9
L1 M User Rec. Pwr.	> -158 dBW	-156.3
L2 C User Rec. Pwr.	> -160 dBW	-159.60
L2 P(Y) User Rec. Pwr.	> -161.5 dBW	-160.96
L2 M User Rec. Pwr.	> -161 dBW	-160.56
L5 User Rec. Pwr.	> -154.9 dBW	-154.1
Mean Mission Duration	> 9.9 years	10.86
SV Reliability	> 0.61	0.76090

GPS IIF is meeting or exceeding all specified requirements

- GPS IIF available for launch in November 2009
- New/improved capabilities for civil and military users
- Reliable sustainment of GPS constellation over the coming years
- Partnership between GPSW and Boeing continues to focus on mission success


Modernization

Satellites

- Basic GPS
- C/A civilsignal (L1C/A)
- Std Pos
- Precise
- NDS

GPS III (Block III)

- Increased accuracy
- Increased A/J power (up to 20 dB)
- Signal integrity
- Search and Rescue
- Common Galileo OS & GPS (L1C)

Control Systems

- TT&C
- L1 & L2 monitoring

Upgraded (AEP)

- GPS IIF TT&C
- SAASM

OCX Blk 1 (Modernized)

- Flexible Architecture
- Mission Ops for all SVs
- Control 1 new signal (L2C, L5, or M-Code)
- · Control Flex Power
- Signal Integrity Monitoring

OCX Blk 2

- · LADO ops for all SVs
- All new signals (including L1C)

OCX Blk 3&4 (GPS III B/C)

- Manage Spot Beam
- NAVWAR, GNOC
- Mission Planning
- · Effects-Based Ops

User Equipment

- •Man Pack
- •MAGR. PLGR
- •RCVR-3A, 3S
- •OH. UH
- •FRPA, CRPA

- DAGR GAS-1
 - MAGR2K
 - GB-GRAN

MGUE (Modernized)

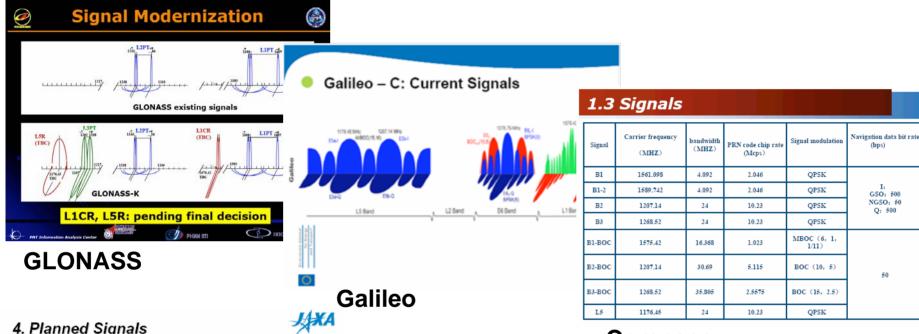
- Anti-Jam, Anti-Spoof
- Military exclusivity
- Handheld / Anti-Tamper
- Gnd & Avionics embed
- Auto OTA Rekeying

GPS Modernization - New Civil Signals

Second civil signal "L2C"

- Designed to meet commercial needs
- Higher accuracy through ionospheric correction
- 1st launch: Sep 2005 (GPS IIR-M); 24 satellites: ~2016

Third civil signal "L5"


- Designed to meet demanding requirements for transportation safety-of-life
- 1st launch: ~ 2009 (GPS IIF); 24 satellites: ~2018

Fourth civil signal "L1C"

- Designed with international partners for GNSS interoperability
- Begins with GPS Block III
- 1st launch: ~2014; 24 satellites: ~2021

International GNSS Coordination

4. Planned Signals

■ Planned Signal List for QZSS

Generic Signal Name	Center Frequency	Notes	
L1-C/A	1575.42MHz	■ GPS interoperable signals	
L1C	13/3.4211112	■Compatibility and interopera	
L2C	1227.6MHz	existing and future modernize signals	
L5	1176.45MHz		
L1-SAIF*	1575.42MHz	■ Compatibility with GPS-SBA	
		■ WDGPS	
LEX 1278.75MHz		■Experimental Signal with hig rate message (2Kbps)	
		■ Compatibility with Galileo E	

^{**}L1-SAIF: L1-Submeter-class Augmentation with Integrity Function

QZSS

IRNSS SERVICES & CENTRE FREQUENCIES

Service Type	Signals	Frequency Band
Standard Positioning Service	1 MHz BPSK	L5 (1176.45 MHz) S (2492.08 MHz)
Precision Service	BOC(5,2)	L5 (1176.45 MHz) S (2492.08 MHz)

IRNSS 15

Compass

Support to Civil Users

- Resident Program Manager for Civil Applications
 - DOT representative located within GPSW
- Freely available, accurate, and stable documentation
 - Standard Positioning Service Performance Standard (SPS PS)
 - Interface Control Documents (ICDs) / Interface Specifications (ISs)
 - Technical definitions for L1 C/A, L2C, L5, and L1C signals
- Public Interface Control Working Groups (ICWGs)
 - Insight, access, and influence to ICDs/Iss
- Special manufacturer/user outreach
 - Developing resolution plans for SVN-49 anomaly

Upcoming Events

- Wednesday, 23 Sep 09
 - ION panel session dedicated to SVN-49 anomaly
- Public Interface Control Working Groups (ICWGs)
- Tuesday, 29 Sep 09
 - ICWG for IS-GPS-200
- Wednesday, 30 Sep 09
 - ICWG for IS-GPS-800
- Thursday, 1 Oct 09
 - ICWG for IS-GPS-705

In Los Angeles

- Early 2010
- Launch of first IIF satellite

The Military GPS Challenge

• Bring advantages of commercial market to the joint and allied warfighter,

and

Maintain the advantages of military exclusivity and resistance to electronic attack

MIL advantages

Warfighter effectivenes

S

 Previous approach (2003): Study commercial devices and levy their benefits as requirements in a traditional military acquisition

DAGR – Defense Advanced GPS Receiver: All-in-view, Second Generation Security, under 1 lb

• Pro: Strong military receiver performance

Con: Interface and features are quickly outdated

Current approach (2012): Develop military components for insertion into COTS or non-COTS systems

Keys to the Global Success of GPS

Program Stability and Performance

- Civil service performance commitment met continuously since 1993
- Continuous improvements in accuracy, availability, etc.
- Continuity of constellation and signals ensured through Air Force operation and acquisition
- Funding through U.S. taxpayers

Policy Stability and Transparency

- Open access to civil GPS signals, free of direct user fees
- Open, free, and stable technical documentation
- Market-based competition worldwide
- National-level policy coordination including civil and military leaders

Commercial Entrepreneurship and Investment

User Segment

- GPS has continuously met is commitments to all users since FOC
- GPS has had multiple operational and acquisition successes in the past year
- Modernization of all GPS Segments is on track

Maintaining And Improving GPS Services For All Users Is Job #1