GPS Time and Frequency Transfer Activities at NIST

Victor Zhang

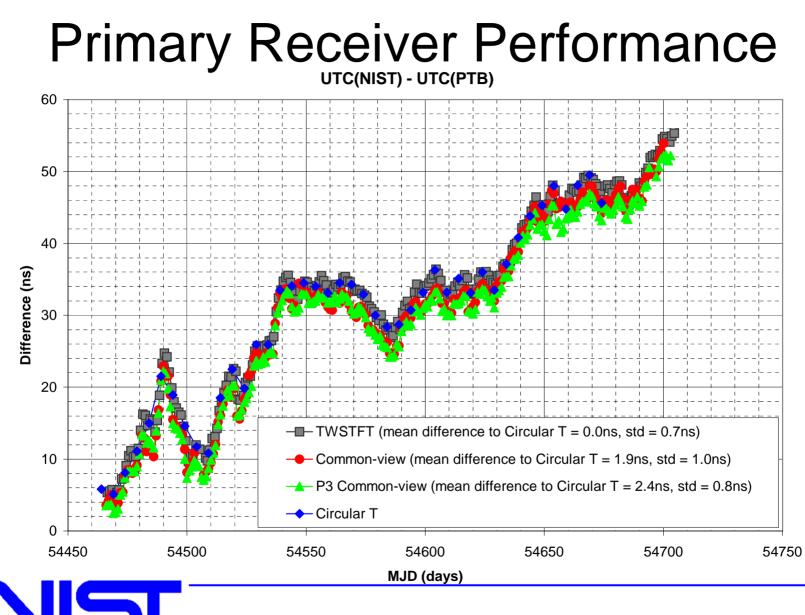
National Institute of Standards and Technology Time and Frequency Division

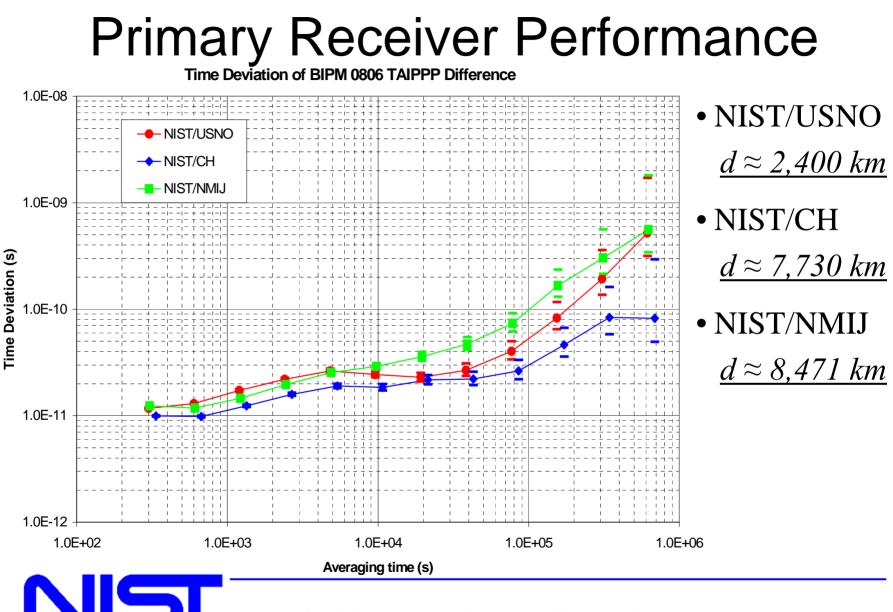
Common-View Operation at NIST

- Secondary method for contributing NIST time scale to the computation of TAI and UTC
- Time and frequency comparison network in the Inter-American Metrology System (SIM)
- Synchronize clocks in radio stations WWV/WWVB, and WWVH to UTC(NIST)
- Global Time Service
- Time Measurement and Analysis Service (TMAS)

One-Way Operation at NIST

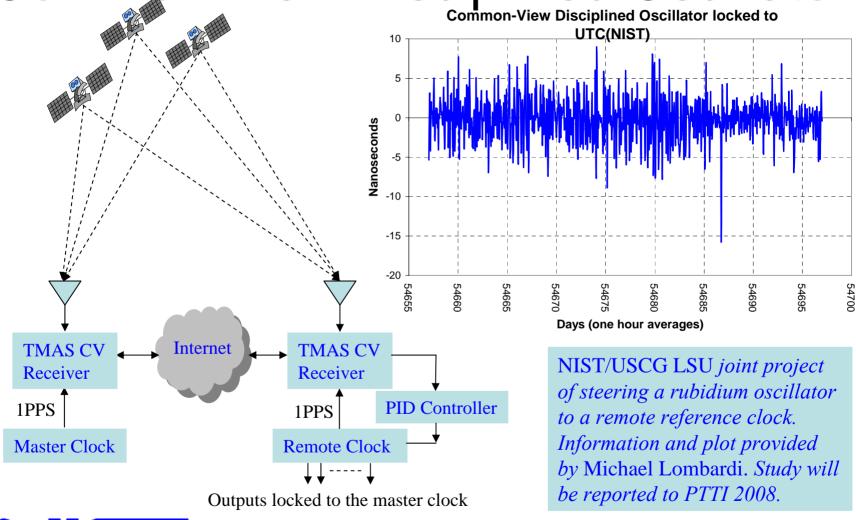
- Frequency Measurement and Analysis Service (FMAS)
- GPS Disciplined Oscillator and GPS One-Way Receiver Calibration Service
- NIST GPS Data Archive


Carrier-Phase Operation at NIST


- Two receivers (NISU, NIST) in the IGS tracking network
- Remote clock comparison with the IGS clock products
- Participate in the BIPM TAI PPP pilot project

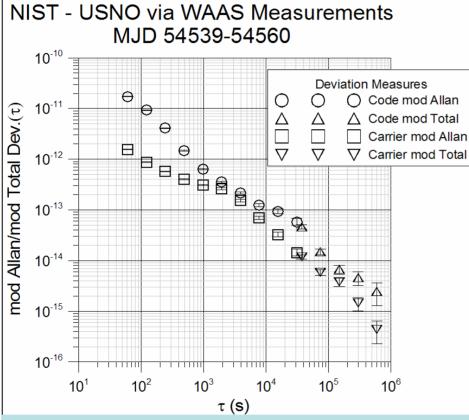
Primary GPS Timing Receiver, NIST

- Dual frequency, geodetic-type multi-channel receiver
- Receiver calibrated with respect to the previous primary receiver (NBS10, last calibrated by the BIPM travel receiver in December 2003)
- Receiver recently became our second IGS receiver
- Receiver produces
 - Conventional common-view data
 - RINEX files (data used for P3, carrier-phase time transfer, and for IGS products)



Time and frequency comparison network in the Inter-American Metrology System (SIM)

Date of Operation	Reference Clock
2005	UTC(NIST)
April 2005	UTC(CNM)
May 2005	UTC(NRC)
October 2005	UTC(CNMP)
September 2006	UTC(ONRJ)
January 2007	Cesium
February 2007	Cesium
July 2007	Cesium
August 2007	Rubidium
January 2008	Cesium
September 2008	Cesium
September 2008	Rubidium
	2005 April 2005 May 2005 October 2005 September 2006 January 2007 February 2007 July 2007 August 2007 January 2008 September 2008



Common-View Disciplined Oscillator

48th CGSIC meeting in Savannah, Georgia, September 2008

Using WAAS Satellite for Time and Frequency Comparison

- Two geostationary WAAS satellites transmitting the standard GPS L1 and L5 codes and carriers
- Timing labs using parabolic dish antennas to obtain high-gain, lowmultipath interference signals without interruption
- Long observation intervals providing the continuous ionosphere-free phase comparison between timing labs

Proc. 2008 IEEE FCS, "Time and Frequency Transfer Using a WAAS Satellite with L1 and L5 Code and Carrier" by M.A. Weiss, E. Powers, A. Kropp, B. Fonville, P. Fenton, R. Pelletier

NIST GPS Time and Frequency Transfer Service

- Frequency Measurement and Analysis Service (FMAS) (*Service ID*#76100S)
- Time Measurement and Analysis Service (TMAS) (*Service ID*#76101S)
- Global Time Service (*Service ID*#76110S)
- Characterization of Global Positioning System (GPS) Satellite Receivers (*Service ID*#76120S)

http://ts.nist.gov/ts/htdocs/230/233/calibrations/time_freq/broadcast.htm

GPS Data Archive [GPS - UTC(NIST) all-in-view]

http://tf.nist.gov/service/gpstrace.htm

