UNCLASSIFIED

National Positioning Navigation and Timing Architecture

Civil GPS Service Interface Committee Meeting

Karen Van Dyke, DOT/RITA/Volpe Center Lt Col Patrick Huested, National Security Space Office 15 September 2008

Overview

- PNT Architecture Background
- Architecture Development
- Guiding Principles
- Recommendations
- Next Steps

UNCLASSIFIED

Foundations

RITA 🔕

FHWA 💫

DOC (

NIST NIST

USCG 📵

23-Jan-2006

DOT/RITA

Memo

14-Mar-2006

NPEC

Action Items

26-Jan-2006

National PNT

"RITA will lead effort on behalf of DOT for the civil community"

"NPCO will initiate an effort with NSSO"

AT&L/S&T

PNT Architecture

TOR

11-Jul-2006

JS

PBFA

NII

USA

USN

USMC

USAF

SAF/USA

NGA

NSA

STRAT

SMDC

AFSPC

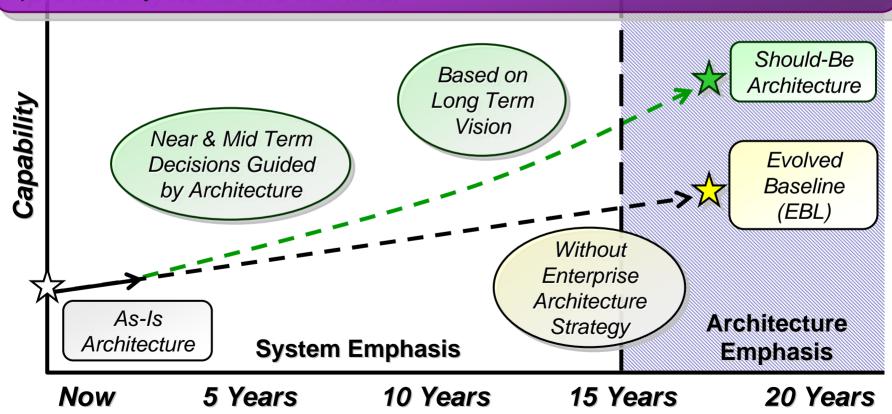
USNO

NRL

SMC

ASD/NII Memo

"NSSO develop a Architecture"


More Effective & Efficient PNT and an Evolutionary Path for Government Provided Systems & Services

Primary Objective

"...provide more effective and efficient PNT capabilities focused on the 2025 timeframe and an evolutionary path for government provided systems and services." -- Terms of Reference

Scope

U	S	E	R	S
---	---	---	---	---

Military

Homeland Security

Civil

Commercial

DOMAIN

Space

Air

Surface

Sub-Surface

MISSIONS

Location Based
Services
Tracking
Survey
Scientific
Recreation
Transportation
Machine Control
Agriculture
Weapons
Orientation
Communications
and Timing

SOURCES

GNSS

GNSS Augmentation

Terrestrial NAVAIDS

Onboard / User Equip

Networks

PROVIDERS

Military

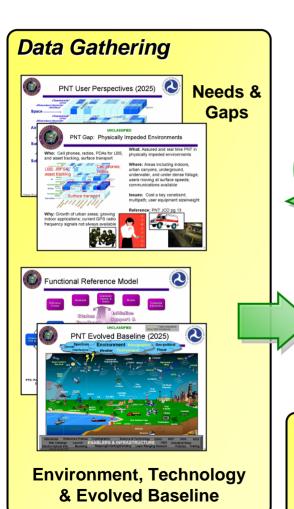
Civil

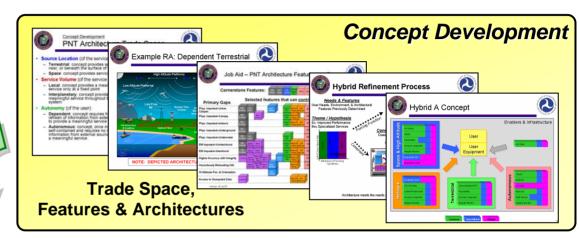
Commercial

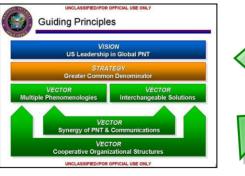
International

Broad Scope Required Innovative Approaches and Focused Analysis Efforts

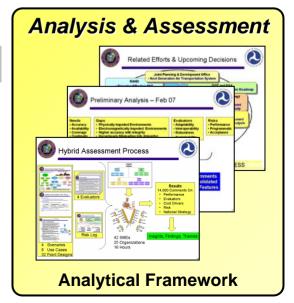
Primary PNT Gaps




- Gaps primarily drawn from military's PNT Joint
 Capabilities Document, with additions and modifications
 from parallel civil community documents and discussions
 - Operations in Physically Impeded Environments
 - Operations in Electromagnetically Impeded Environments
 - Higher accuracy with integrity
 - Notification of Hazardously Misleading Info (Integrity)
 - High Altitude/Space Position and Orientation
 - Geospatial information access to improved GIS data (regarding intended path of travel)
 - Insufficient modeling capability



Cumulative Process



S

Community Involvement

Architecture Development Team,
Subject Matter Experts,
Small Working Groups
& Industry

Guiding Principles

VISION US Leadership in Global PNT

STRATEGY
Greater Common Denominator

VECTORMultiple Phenomenologies

VECTORInterchangeable Solutions

VECTORSynergy of PNT & Communications

VECTORCooperative Organizational Structures

Vision

US Leadership in Global PNT

- Based on a foundation of national policy
- Efficiently develop and field the best technologies and systems (e.g. cost, schedule, acceptable risks, user impact)
- Promulgate stable policies (commitment to funding, commitment to performance, advanced notice of change, etc)
- Foster innovation through competition within the commercial sector
- Ensure robust and enduring inter-agency coordination and cooperation
- Maximize the practical use of military, civil, commercial and foreign systems and technologies
- Judiciously develop and apply standards and best practices

Strategy

The US can Best Achieve Efficiency and Effectiveness through a Greater Common Denominator Approach

- Maintain GPS as a cornerstone of the National PNT Architecture
- Monitor PNT signals to verify service levels, observe environmental effects, detect anomalies, and identify signal interference for near real-time dissemination
- Transition or divest US GNSS augmentation assets that are unnecessarily redundant after capability is available from GPS modernization or other methods
- Continue to investigate methods to provide high-accuracywith-integrity solutions for safety-of-life applications
- Develop a national approach to protect military PNT advantage

Vector: Multiple Phenomenologies

1

Use Multiple Phenomenologies to the Maximum Extent Practical to Ensure Robust Availability

- Encourage appropriate development and employment of equipment that integrates information from diverse sources and information paths
- Assess the potential for the use of foreign PNT systems for safety-of-life applications and critical infrastructure users and, as appropriate, develop clear standards and criteria for their use
- Continue military PNT exclusive use policy while studying development of capabilities to enable military use of other signals
- Promote standards for PNT pseudolites and beacons to facilitate interchangeability and avoid interference
- Study evolution of space-based and terrestrial PNT capabilities to support diversity in PNT sources and information paths
- Ensure critical infrastructure precise time and time interval users have access to and take advantage of multiple available sources

Vector: Interchangeable Solutions

2

Strive for Interchangeable Solutions to Enhance Efficiency and Exploit Source Diversity

- Use participation in international PNT-related activities to promote the interchangeability of PNT sources while assuring compatibility
- Evolve standards, calibration techniques, and reference frames to support future accuracy and integrity needs
- Identify and develop common standards that meet users' needs for PNT information exchange, assurance and protection
- Establish common standards that meet users' needs for the depiction of position information for local and regional operations

Vector: Synergy of PNT & Communications

3

Pursue, where Appropriate, Fusion of PNT with New and Evolving Communications Capabilities

Recommendation

 Identify and evaluate methods, standards and potential capabilities for fusion of PNT with communications

UNCLASSIFIED

Vector:

Cooperative Organizational Structures

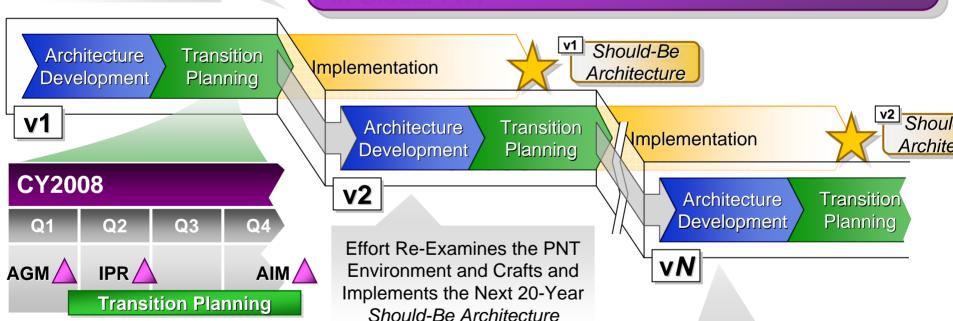
4

Promote Interagency Coordination & Cooperation to Ensure the Necessary levels of Information Sharing

- Develop a national PNT coordination process
- Identify and leverage centers of excellence for PNT phenomenology and applications
- Define, develop, sustain, and manage a PNT modeling and simulation core analytical framework

Recommendation Tree

Vision	US Leadership in Global PNT									
Strategy	The US can Best Achieve Efficiency and Effectiveness through a Greater Common Denominator Approach									
Vectors		Multiple Phenomenologies	2	Interchangeable Solutions	3	Synergy of PNT & Communications	4	Cooperative Organizational Structures		
Recommendations	GPS – An 1 Architecture Cornerstone	Integrated User Equipment	12	Interchangeability with Foreign PNT Sources	16	Synergy of PNT & Communications	17	National PNT Coordination Process		
	PNT Signal 2 Monitoring & 7 Dissemination	Civil Use of Foreign PNT	13	Standards & Reference Frames			18	Phenomenology & Application Champions		
	Augmentation 3 Transition Opportunities	US Military Use of Non-Military Signals	14	Info Exchange, Assurance & Protection			19	Modeling & Simulation Framework		
	4 High Accuracy with Integrity	PNT Pseudolites & Beacons	15	Grids & Coordinate Systems						
	5 Protect Strategic Advantage	Evolution of PNT Capabilities								
	1	Critical Infrastructure & Time								



Architecture Effort and Schedule

A Plan to Achieve the Should-Be Architecture is Produced & Implementation Begins

The National PNT Architecture Effort Employs an Iterative, Interagency Process to Plan US Leadership in Global PNT

Transition Plan provided to agencies

Effort Repeats--the Next New Should-Be Architecture is Developed, Planned, and Implemented

Next Steps

Workshop(s) to Obtain Public Feedback on Recommendations

- First "Industry Day" session in conjunction with the 2008 Institute of Navigation (ION) Global Navigation Satellite System (GNSS) conference.
 - Date: September 16
 - Time: 1PM 4PM, starting with a presentation by NSSO
 - Location: Savannah International Trade and Convention Center, Rooms 105 & 106

Influence update to PNT planning documents

- Federal Radionavigation Plan
- Five-Year National Space-Based PNT Plan

Architecture Transition Plan

- Event-based implementation timeline
- Coordinate through Decision Coordination Group members and co-sponsors as appropriate

Points of Contact

- National Security Space Office
 - CAPT Milton Abner
 - NSSO.PNT@osd.mil
 - Website: http://www.acq.osd.mil/nsso/pnt/pnt.htm
- OASD/NII
 - Mr. Ray Swider
 - raymond.swider@osd.mil
- DOT RITA, Volpe Center
 - Ms. Karen Van Dyke
 - Karen.VanDyke@dot.gov