Roadmap to Development of NASA GPS PNT Capabilities

48th Civil Global Positioning System Service Interface Committee

James J. Miller, Navigation Theme Lead Space Communications and Navigation Program Space Operations Missions Directorate, NASA Headquarters September 15-16, 2008

Key Points

- Defining NASA Navigation Requirements from a "Network Perspective"
- Developing a "Near Earth Nav Roadmap" with GPS as a core enabler
- Organizing NASA GPS/PNT activities to support future space and science missions

NASA "Requirements Process" for GPS

- U.S. PNT Policy tasks the NASA Administrator to take the lead in developing GPS requirements for civil space users.
- Space Comm & Nav responsible for coordination among the NASA centers, and U.S. agencies, to develop and submit civil space requirements into the GPS requirements process.

Defining NASA Nav Requirements Nav Workshop \Rightarrow Nav Roadmap

- **Define "Navigation**" as the integrated positioning, nav, and timing measurements required to fulfill a mission
- Initiate a NASA-wide survey of current and planned Navigation technologies and techniques
- Catalogue and organize nav applications according to space environment, service domain, and requisite timeframe
- Conduct Workshops to identify potential synergies, gaps, and interdependencies of Nav applications. Affects:

(1) infrastructure (2) services (3) standards

(4) systems planning & technology investment

 Develop Strategic "Navigation Roadmap" that identifies Nav mission interdependencies, promotes collaboration, and leverages resource needs to enable flexible architecture options

GPS is core to the Near Earth Navigation Environment

- Approx. 95% of projected worldwide space missions 2008-2027 to be Earth-orbiting
- Nearly 60% of missions will be in LEO well below 3000km (upper limit of GPS Terrestrial Service Volume)
- The purpose of the Near Earth Navigation Roadmap is to provide a framework for developing GPS PNT capabilities in space for the next 25 years
- Objective is to fully integrate these capabilities with NASA's infrastructure

WORLDWIDE MISSION MODEL: 2008-2027

		•																-						
Total Payloads	2008 257	2009 270	2010 308	2011 234	2012 157	2013 75	2014 105	2015 81	2016 68	2017 42	2018 43	2019 37	2020 29	2021 32	2022 22	2023 27	2024 50	2025 47	2126 51	2027 39	Total 1,974			
PAYLOADS BY TYPE Commercial Gvil Military University and Other Total	79 114 43 21 257	95 112 49 14 270	113 111 41 43 308	58 146 28 2 234	77 57 22 1 157	36 26 13 0 75	56 32 17 0 105	45 23 12 1 81	35 17 16 0 68	17 12 13 0 42	14 17 12 0 43	8 6 23 0 37	10 13 6 0 29	17 7 8 0 32	14 5 3 0 22	15 4 8 0 27	38 7 5 0 50	37 6 4 0 47	35 8 8 0 51	26 7 6 0 39	825 730 337 82 1,974			
PAYLOADS BY ORBIT Low Earth Orbit Geostationary Medium Earth Orbit Deep Space Eliptical Total	169 65 12 5 267	157 72 18 18 5 270	207 59 20 15 7 308	168 37 19 7 3 234	93 42 11 10 1 157	36 27 6 5 1 75	62 34 5 4 0 105	38 29 7 3 4 81	45 18 2 2 1 68	15 18 5 4 0 42	21 16 2 4 0 43	23 9 5 0 0 37	12 11 2 4 0 29	9 16 4 2 1 32	8 13 1 0 0 22	7 15 5 0 27	34 13 2 1 0 50	27 11 9 0 0 47	25 11 12 3 0 51	16 14 8 0 1 39	1,172 530 149 94 29 1,974		GEO,2	:/16
PAYLOADS BY MASS (KG) 1-500 501-1,000 1,001-5,000 More than 5,000 Total	95 33 94 35 257	90 66 87 27 27 270	138 68 72 30 308	117 42 51 24 234	41 47 48 21 157	2 20 31 22 75	14 41 35 15 105	6 26 39 10 81	5 31 22 10 68	0 9 27 6 42	3 10 23 7 43	0 13 18 6 37	3 1 18 7 29	0 2 22 8 32	1 0 15 6 22	1 0 20 6 27	0 27 17 6 50	0 28 12 7 47	1 27 17 6 51	0 17 16 6 39	517 508 684 265 1,974	LEO, 59%	Deep	EO, 8%
PAYLOADS BY WORLD REV North America Europe Asia and Pacific Rim Russia and CIS Africa and Middle East Latin America and Caribbea Total	107 54 47 35 12 2 257	73 93 47 34 5 18 270	114 95 54 28 11 6 308	155 37 16 20 3 3 234	62 32 16 40 5 2 157	30 19 18 6 1 1 75	44 13 18 26 1 3 105	39 18 10 12 2 0 81	40 8 9 3 0 68	13 6 12 9 0 2 42	16 7 11 8 1 0 43	17 8 9 0 0 37	9 7 6 1 0 29	7 5 10 2 1 32	4 5 4 6 3 0 22	6 5 8 2 1 27	30 6 7 1 0 50	24 11 3 6 1 2 47	23 11 5 10 1 1 51	13 14 3 6 2 1 39	826 456 297 295 57 43 1,974		Space, Elliptical, 1%	,596 5
Now										Ρ	roj	jec	cte	d	20)25	5	-	(*)	Soui	rce: Aerospace Am	erica, Dec.	2007

Navigation Environments

Earth

Earth

unar Space

Optical Tracking

Solar

Deep-Space Navigation

ad Trucking

Near Earth Navigation Infrastructure

Network Dependent Navigation

On-Board ("Autonomous") Navigation

GPS Space Capabilities

• Terrestrial Service Volume LEO (≤ 3,000 km) Characteristics

- -Same PVT performance enjoyed by terrestrial users
- -Uniform received power levels
- Fully overlapping coverage of GPS main beams
- -Nearly 100% GPS coverage
- -Instantaneous navigation solutions

• Space Service Volume MEO (3,000 – 8,000 km) Characteristics

- -Four GPS signals typically available simultaneously
- -One-meter orbit accuracies feasible
- –GPS signals over the limb of the earth become increasingly important
- -Wide range of received GPS signal strength

Space Service Volume HEO/GEO (8,000 – 36,000 km) Characteristics

- Nearly all GPS signals received over the limb of the Earth
- -Users will experience periods when no GPS satellites are available
- Received power levels will be weaker than those in TSV or MEO SSV
- Properly designed receiver should be capable of accuracies ranging from 10s of meters to 100s of meters, depending on receiver sensitivity and clock stability.

Assuming a nominal, optimized GPS constellation and no GPS spacecraft failures, signal availability at 95% of the areas at a specific altitude within the specified SSV are planned as:

	MEC) SSV	HEO/GEO SSV					
	at least 1 signal	4 or more signals	at least 1 signal	4 or more signals				
L1	100%	≥97%	\geq 80% $_{1}$	≥1%				
L2, L5	100%	100%	\geq 92% $_2$	$\geq 6.5\%$				
1 With loss than 100 minutes of continuous outpasting								

- 1. With less than 108 minutes of continuous outage time.
- 2. With less than 84 minutes of continuous outage time.

Objective Goals:

MEO SSV: 4 GPS satellites always in view HEO/GEO SSV: at least 1 GPS satellite always in view

GPS and Human Space Flight

Miniaturized Airborne GPS Receiver (MAGR-S)

- Modified DoD receiver to replaces TACAN on-board the Space Shuttle
- Designed to accept inertial aiding and capable of using PPS
- Single-string system (retaining three-string TACAN) installed on OV-103 Discovery and OV-104 Atlantis, three-string system installed on OV-105 Endeavour (TACAN removed)
- GPS taken to navigation for the first time on STS-115 / OV-104 Atlantis
- GPS/INS only navigation used on STS-118 / OV-105 Endeavour

STS-115

MAGR-S

STS-118

Space Integrated GPS/INS (SIGI)

- Receiver tested on shuttle flights prior to deployment on International Space Station (ISS)
- The ISS has an array of 4 antennas on the T1 truss assembly for orbit and attitude determination
- In operation

ISS as viewed 11 from STS-118

GPS Navigator Receiver Development at GSFC

Dynamic

- Receiver-transmitter relative dynamics much higher
- Enlarges Doppler search space
- Signal moves rapidly in search space
- Acquisition must be FAST
- Sensitivity
 - Weak signals must be acquired and tracked to maximize signal availability

On Orbit GPS Navigation Concept

GPS Navigator Receiver Supported Missions

- HEO GPS navigation for Magnetospheric MultiScale (MMS) mission
 - Navigator is the GPS portion of the Interspacecraft Ranging and Alarm system (IRAS).
 - TRL 6 prototype IRAS scheduled for completion 3/09.
- Bistatic Radar Ranging on HST SM4
 - Navigator is part of Relative Navigation Sensor system. Flight unit delivery in 1/08. Launch; 10/08.
 - Will estimate range between Shuttle and HST from weak signal reflected GPS
- GOES
 - Project interested in commercializing high altitude GPS capability for potential vendors of next GOES spacecraft.
 - Prototype receiver being developed for in-house testing at Boeing, Lockheed Martin.
- GPM
 - Primary navigation and time reference
- Orion/CEV
 - Fast acquisition for re-entry navigation after blackout
 - Working with avionics subcontractor Honeywell

Orion/CEV Operations

MMS Mission Formation Flying

Orion/CEV Hardware Navigation Demo on Last Shuttle Mission

BlackJack Flight GPS Science Receiver Development at JPL

- Highest accuracy and flexibility for NASA science
 - Precise orbit determination (JASON, ICESat, SRTM missions)
 - Occultation science (CHAMP, SAC-C, FedSat, 2 GRACE, 6 COSMIC)
 - Gravity field (CHAMP, GRACE)
 - Surface reflections (SAC-C, CHAMP)
- Dual frequency, C/A code plus semi-codeless P(Y)1 and P(Y)2
- Status
 - 19 BlackJack receivers launched
 - 19 started autonomously on power up
 - 64 receiver-years powered in orbit

Operating in-orbit

rcvr worked satellite failed 12/00

GPS Metric Tracking & Space-Based Range

- Space-based navigation, GPS, and Space Based Range Safety technologies are key components of the next generation launch and test range architecture
- Provides a more cost-effective launch and range safety infrastructure while augmenting range flexibility, safety, and operability
- Status: Memorandum signed in November 2006 for GPS Metric Tracking (GPS MT) by January 1, 2011 for all DoD, NASA, and commercial vehicles launched at the Eastern and Western ranges

GNSS Monitoring: IGS and GDGPS

International GNSS Service (IGS)

- Global network of over 350 GPS monitoring stations from 200 contributing organizations in 80 countries.
- NASA funds the IGS Central Bureau at JPL and a global data center located at the GFSC.
- Mission to provide the highest quality data and products as the standard for global navigation satellite systems (GNSS) in support of Earth science research as well as to facilitate other applications benefiting society.
- Currently tracking GPS and GLONASS signals, also able to track Galileo signals.
- Approximately 100 IGS stations report with a latency of one hour.
- http://igscb.jpl.nasa.gov.

Global Differential GPS (GDGPS) System

- Consists of 100+ dual-frequency, real-time GPS reference stations operational since 2000.
- High accuracy augmentation to support the real-time positioning, timing, and orbit determination requirements of NASA's science missions.
- Real-time products also used for GPS situational assessment, natural hazard monitoring, emergency geolocation (E911), and other civil and defense applications.
- Future NASA plans include developing the TDRSS Augmentation Satellite Service (TASS) to disseminate the GDGPS real-time differential correction message to Earth satellites.

GPS Geodetic Requirements

GPS 35/36 Solid Coated Retroreflector and Hollow Cube and Array

NASA SLR 2000 Station

Anticipated GPS III Geodetic Requirements

- 1. Achieve a stable geodetic reference frame with an accuracy at least ten times better than anticipated user requirements
- 2. Maintain a close alignment of the WGS 84 reference frame with the International Terrestrial Reference Frame
- 3. Provide a quality assessment capability independent of current radiometric measurement used to determine GPS orbits and clock performance
- 4. Ensure interoperability of GPS with other GNSS's through a common, independent measurement technique

Status

- SVN-35 withdrawn from service, one remaining reflectorequipped GPS vehicle in operation
- Interagency GPS III Geodetic Requirement in IFOR process

ILRS Tracking Sites

Search and Rescue with GPS: Distress Alerting Satellite System - DASS

SARSAT Mission Need:

- More than 800,000 emergency beacons in use worldwide by the civil community – most mandated by regulatory bodies
- Expect to have more than 100,000 emergency beacons in use by U.S. military services
- Since the first launch in 1982, current system has contributed to saving over <u>20,000</u> lives worldwide

- On all GPS IIR(M) and IIF satellites
- GPS III DASS Requirement in IFOR Process
 ¹⁸

TDRSS Development and TASS

- TDRS Augmentation Satellite Service (TASS) provides Global Differential GPS (GDGPS) corrections via TDRSS satellites
- Integrates NASA's Ground and Space Infrastructures
- Provides user navigational data needed to locate the orbit and position of NASA user satellites
- TASS improves position accuracy below the 1-meter level

Integrated Near Earth Navigation

