48th CGSIC Meeting - Timing Subcommittee

Savannah, Georgia, 16 September 2008

Chair: Włodzimierz Lewandowski, BIPM,

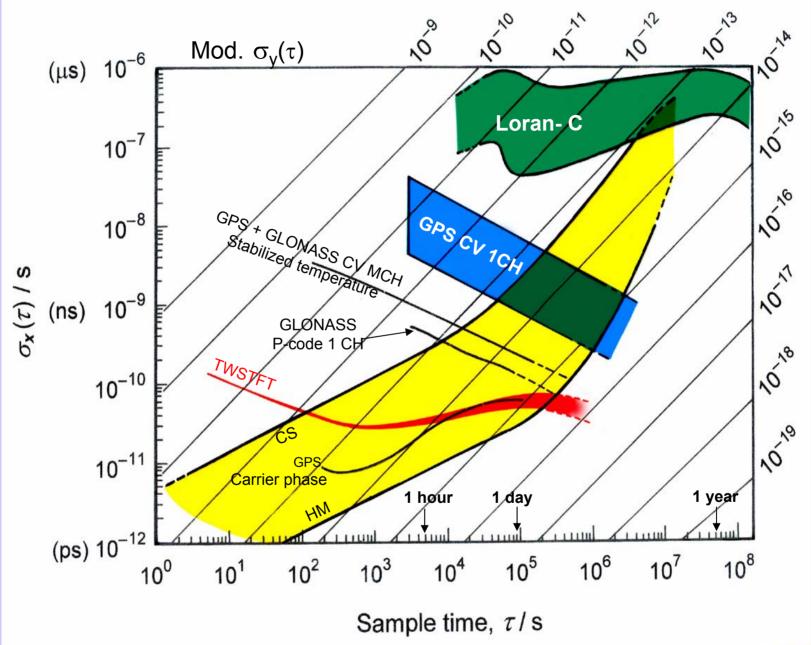
Co-Chair: Victor Zhang, NIST

- 14:00 Introduction Włodzimierz Lewandowski, BIPM
- 14:20 Report from NIST Victor Zhang, NIST
- 14:40 USNO Time Service Demetrios Matsakis, USNO
- 15:00 Timing operations Wendy Kelley, USNO
- 15:10 Progress on time transfer calibration Ed Powers, USNO
- 15:20 Break
- 15:40 Update on the ITU-R WP7A work on the Future of UTC
 - Tom Bartholomew (invited talk)
- 16:00 Time and Navigation Exhibition at the Smithsonian: An Update
 - Andrew Johnston, National Museum of American History
- 16:20 Discussion
- 17:20 Session End

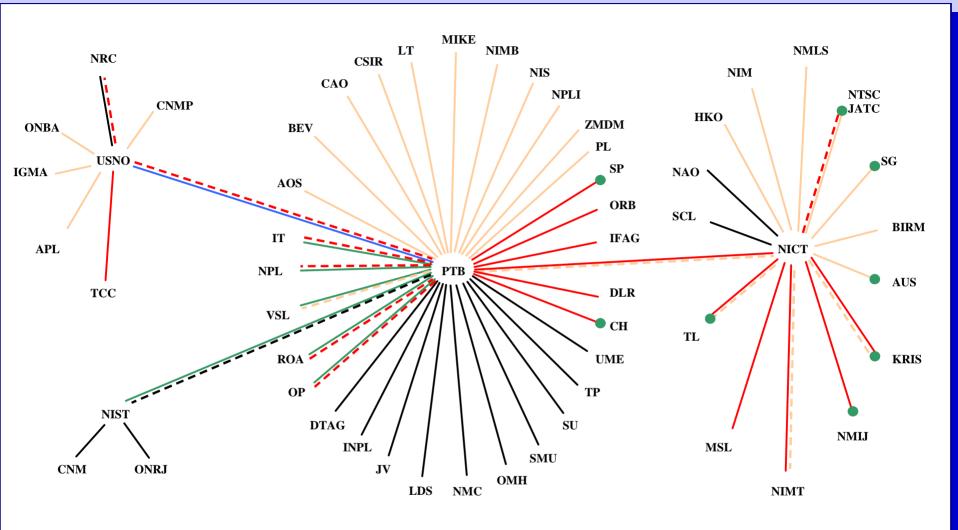
AREAS BEING SERVED

- International Atomic Time (TAI) and UTC
- International Timing Centers
- Global Navigation Satellite Systems
- Telecommunications Industries
- NASA/JPL Deep Space Network
- NIST Global Time Service
- Power Grids and other Industries
- As Research and Comparison Tool
- Other

Outline of presentation


- International time comparisons
 - Uncertainties
 - Upcoming techniques
 - Glonass and Galileo
- Time scales for satellite navigation systems
 - Leap second
 - ICG Recommendation

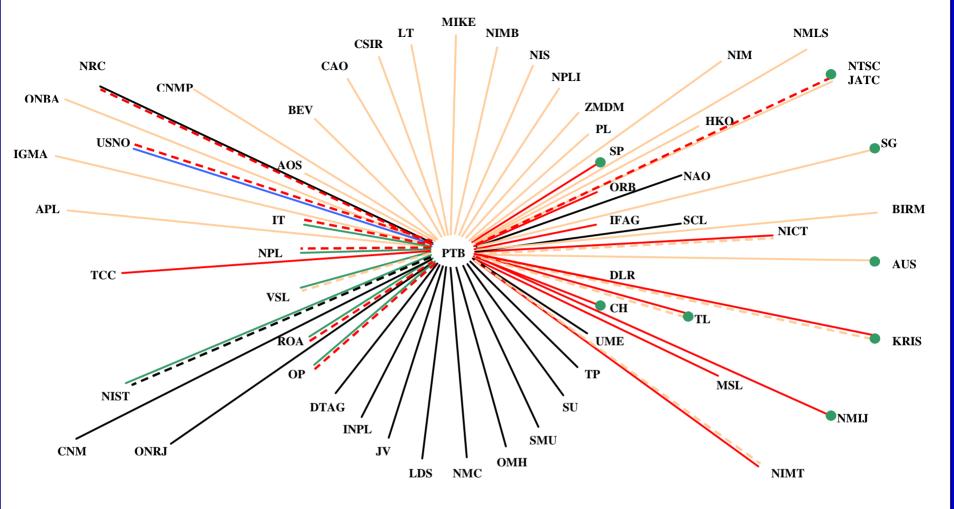
Methods now in use


		uA/ns	uB/ns
•	GPS C/A-code SCH	3.0	5.0
•	GPS C/A-code MCH	1.5	5.0
•	GPS P3 (geod. receiv.)	0.7	5.0
•	TWSTFT	0.5	1.0

^{*}IGS precise orbits and iono maps applied for GPS

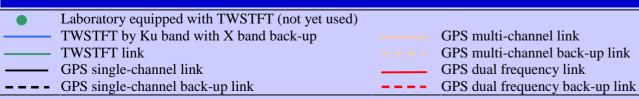
48th CGSIC - Timing Subcommittee

ORGANIZATION OF THE COMMON-VIEW INTERNATIONAL TIME

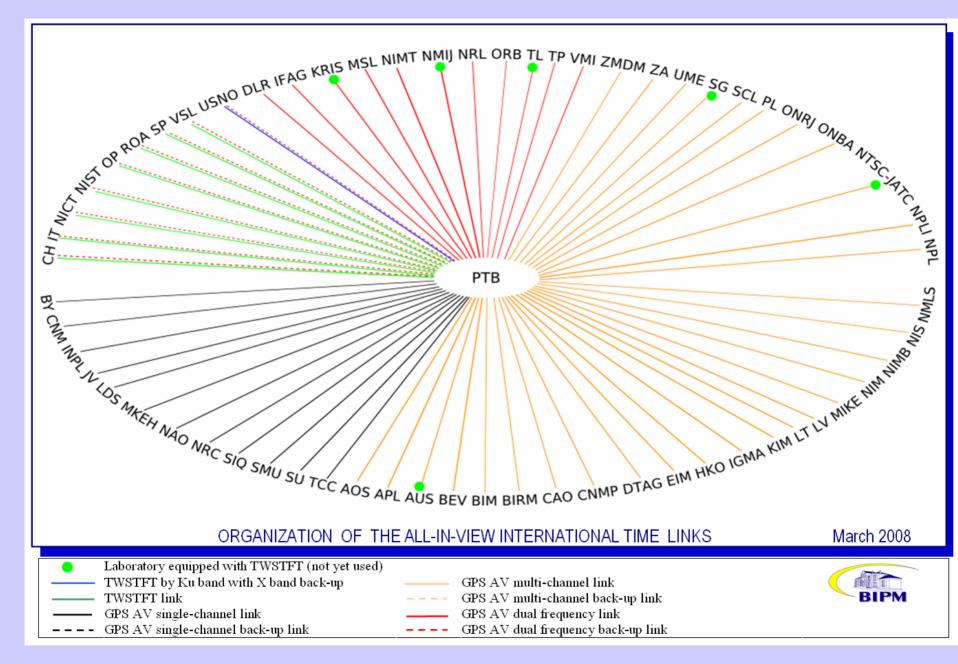

August 2006

Laboratory equipped with TWSTFT (not yet used)
TWSTFT by Ku band with X band back-up
TWSTFT link
GPS single-channel link
GPS single-channel back-up link
48th CGSIC

GPS multi-channel link
GPS multi-channel back-up link
GPS dual frequency link
GPS dual frequency link



6



ORGANIZATION OF THE ALL-IN-VIEW INTERNATIONAL TIME LINKS

September 2006

BIPM CALIBRATIONS OF GPS/GLONASS C/A-code and P-code TIME EQUIPMENT

BIPM differential calibrations of GPS/GLONASS

C/A-code and P-code time equipment

Uncertainty for GPS C/A-code 3 ns (1 σ)

- In 2004/2006 six campaigns were carried out
 - 2004: OP, PTB, NPL, VSL
 - 2005: OP, NTSC, HKO, TL, SG, AUS, KRIS, NMIJ, NICT
 - 2005: OP, TCC, ONBA, IGMA, CNMP
 - 2006: OP, CNM, NIST, USNO, NRC
 - 2006: BIPM, OP, PTB, AOS, USNO, NRL, CSIR (ongoing)
 - 2006: OP, AOS, GUM, LT, TP, BEV, OMH, NIMB, NMC, ZMDM
- In total 20 laboratories out of the 50 that contributes to TAI have been calibrated, and additional 10 will be this autumn.

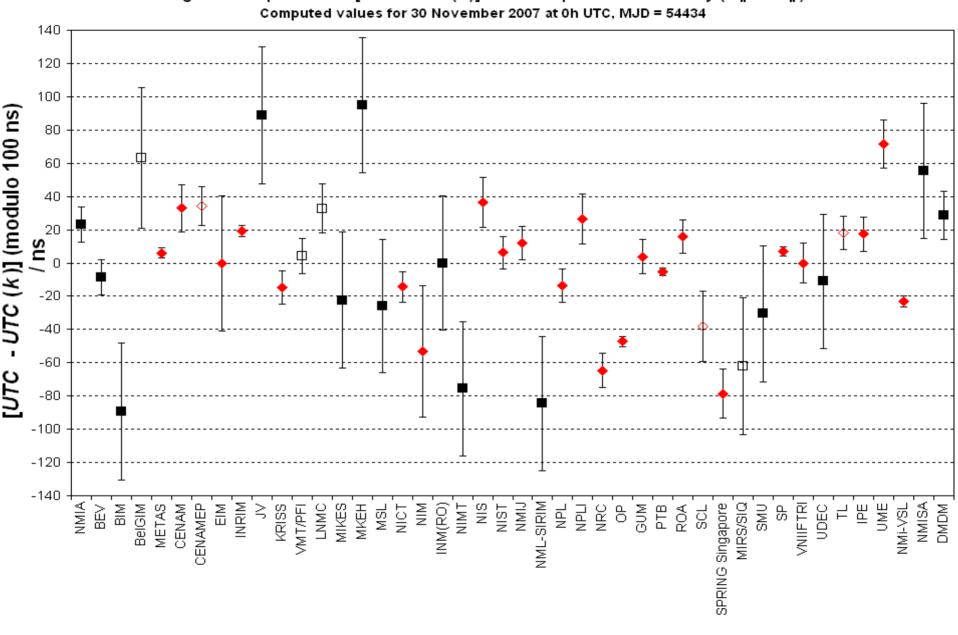
PTB

Date	UTC(i)–UTC(j)	Differential correction	Estimated uncertainty		
		/ns	/ns		
Oct 86	UTC(PTB) –UTC(O	P) +9	2		
Oct 94	UTC(PTB) –UTC(O	P) +4	2		
July 97	UTC(PTB) –UTC(O	P) +2	3		
Nov 97	UTC(PTB) –UTC(O	P) +4	2		
Mar 98	UTC(PTB) –UTC(O	P) -6	2		
June 98	UTC(PTB) -UTC(O	P) +5	3		
June 03	UTC(PTB) -UTC(O	P) -5	4		
August 03	UTC(PTB) –UTC(O	P) 0	3		
July 04	UTC(PTB) -UTC(O	P) 0	3		

BIPM calibrations

- BIPM will continue its GPS/GLONASS C/A-code/P-code calibration campaigns; a new TTS-3 receiver is now dedicated for this purpose.
- Two new BIPM calibrations campaigns are now ongoing.
- BIPM will continue to help the regional metrology organizations to organize GPS/GLONASS calibration campaigns.

CIRCULAR T 223
2006 AUGUST 10, 14h UTC

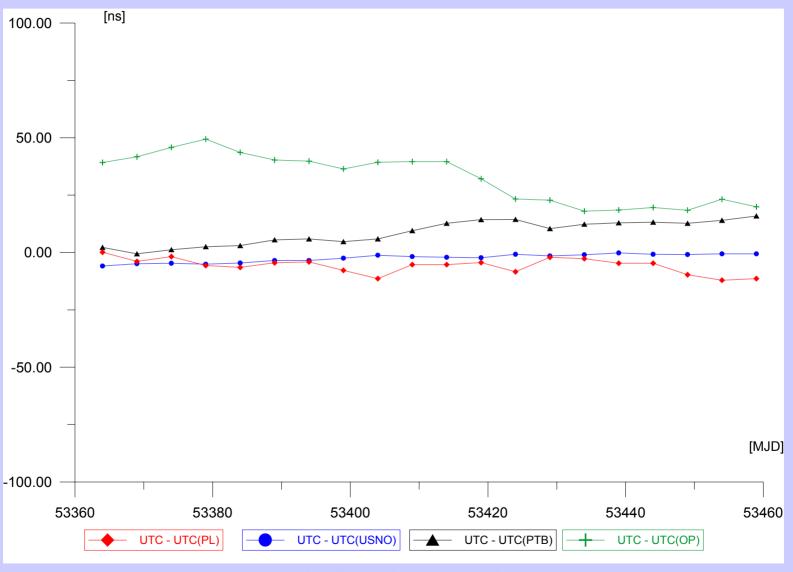

ISSN 1143-1393

BUREAU INTERNATIONAL DES POIDS ET MESURES

Date	2006 Oh UTC	JUN 28	JUL 3	JUL 8	JUL 13	JUL 18	JUL 23	JUL 28	Unce	rtaint	y/ns
	MJD	53914	53919	53924	53929	53934	53939	53944	uA	uB	u
Labor	atory k				[UTC-UTC(k)]/ns					
AOS	(Borowiec)	5.2	9.3	3.3	6.2	10.6	7.1	9.9	1.6	5.3	5.5
APL	(Laurel)	0.8	4.6	-0.7	-3.4	-4.3	3.7	15.4	1.6	5.2	5.4
AUS	(Sydney)	-529.0	-498.6	-490.1	-489.2	-475.2	-445.1	-437.4	3.2	6.3	7.1
BIRM	(Beijing)	-1874.4	-1893.8	-1898.2	-1913.1	-1930.8	-1946.6	-1964.5	2.8	20.4	20.6
CH	(Bern)	30.9	31.3	36.1	32.2	29.9	25.1	21.5	0.8	5.2	5.3
IT	(Torino)	-5.0	-5.2	-3.4	-4.6	-3.6	-2.8	-1.1	0.7	2.2	2.3
KRIS	(Daejeon)	-14.6	-5.4	-4.0	-8.2	-1.6	2.2	-0.3	1.4	6.3	6.5
LT	(Vilnius)	147.0	153.3	145.7	138.2	149.2	161.1	143.2	1.6	5.3	5.5
NIS	(Cairo)	-2.4	-3.9	-2.7	-6.4	-7.7	-8.7	-12.4	1.6	7.2	7.4
NIST	(Boulder)	9.2	8.3	9.2	8.6	8.1	6.7	6.5	0.7	4.9	5.0
NMIJ	(Tsukuba)	-10.3	-11.3	-8.1	-8.3	-7.1	-3.0	0.4	1.4	6.3	6.5
NPL	(Teddington)	7.9	4.9	5.2	3.4	1.1	0.6	0.5	0.7	2.2	2.3
NPLI	(New-Delhi)	119.6	138.9	154.2	169.9	-119.2	-108.5	-94.9	2.5	7.2	7.6
NRC	(Ottawa)	-27.1	-21.3	-26.3	-32.7	-33.7	-28.9	-30.3	3.0	15.1	15.4
NTSC	(Lintong)	10.4	7.1	5.1	1.7	-0.8	1.5	7.3	2.6	6.1	6.6
	(5)	EE04 1	BE 60 6	ECO 4 1	5650 0	BB06 0		5001 6	5 0	00 5	01.1
	(Rio de Janeiro)	7524.1	7568.6	7624.1	7672.2	7726.0	7770.0	7821.6	5.0	20.5	21.1
OP	(Paris)	-2.9	-2.8	-2.6	3.8	3.2	5.8	2.4	0.7	2.2	2.3
ORB	(Bruxelles)	3.8	2.0	0.1	-3.9	-8.0	-10.0	-7.0	0.8	5.2	5.3
PL	(Warszawa)	13.1	11.0	9.0	2.8	12.5	25.5	22.1	1.5	5.0	5.3
PTB	(Braunschweig)	25.8	20.8	18.7	17.2	18.2	17.4	13.9	0.5	1.6	1.7
ROA	(San Fernando)	63.5	63.4	67.0	61.3	74.6	79.1	69.7	0.8	5.2	5.3
SP	(Boras)	25.4	20.1	24.1	25.5	25.6	28.2	25.1	0.8	2.2	2.3
SU	(Moskva)	48.1	45.3	45.7	43.6	42.6	43.2	41.1	3.0	5.2	6.0
TL	(Chung-Li)	3.1	-0.7	-3.1	-3.8	-7.0	-10.2	-12.1	1.3	6.1	6.3
USNO	(Washington DC)	-2.9	-0.3	2.9	3.9	5.3	4.8	5.7	0.5	1.7	1.8
VSL	(Delft)	5.6	10.8	5.1	4.3	-3.9	-7.8	-11.6	0.7	3.4	3.4
νъп	(Dette)	5.0	10.0	2.1	4.3	-3.9	-/.0	-11.0	0.7	3.4	3.4

CCTF-K001.UTC Calculation of UTC

Degrees of equivalence: [UTC - UTC(k)] and its expanded uncertainty $(U_k = 2u_k)$



Red diamonds: direct values [UTC - UTC(k)]

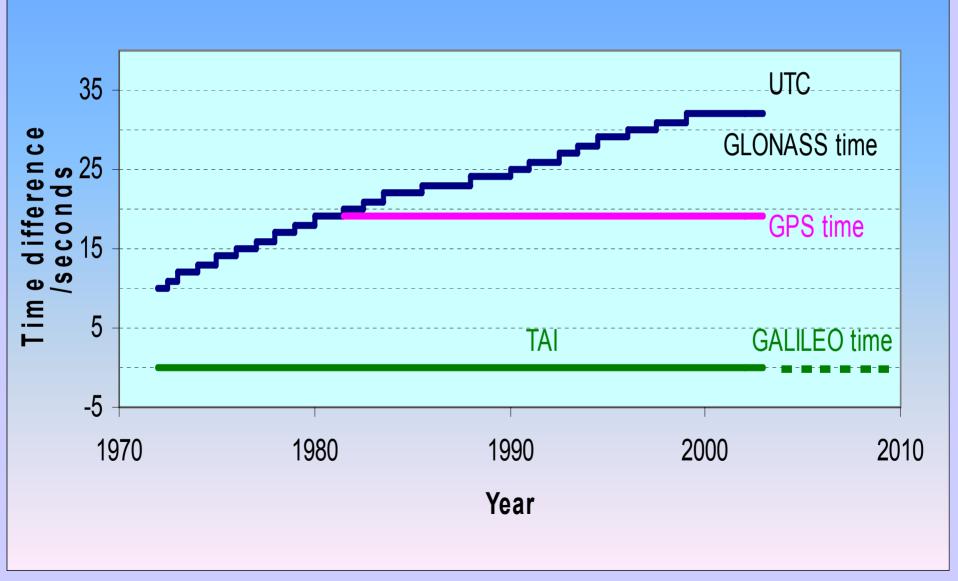
Black squares: [UTC - UTC(k)] values taken modulo 100 ns

Open symbols represent values for laboratories in Associate States and Economies of the CGPM

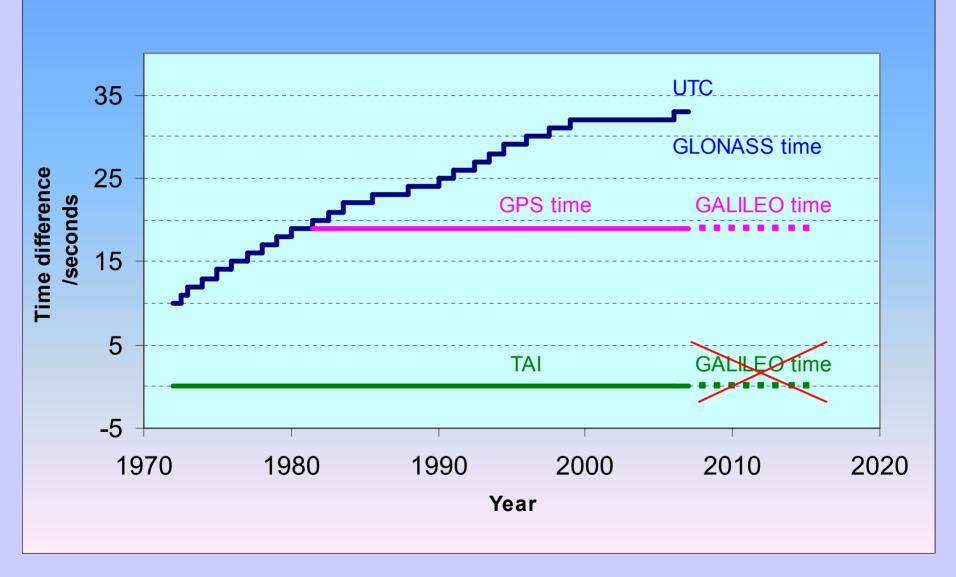
UTC - UTC(i)

New Developments

- Melting pot / all-in-view with IGS time
- Use of Glonass P-code
- Use of SBAS (WAAS, EGNOS, ...)
- New generations of TWSTFT
- Improvements in use of geodetic receivers
- GPS carrier-phase
- Use of geodetic techniques (PPP)
- Real-time (challenge for Galileo and in future for BIPM)


TIME SCALES FOR SATELLITE NAVIGATION SYSTEMS

- Change in the definition of international time scales
 - UTC
 - TAI
 - Leap second
- Relation between satellite time scales
 - GPS time
 - Glonass time
 - Galileo system time



[TAI - Time scale(i)]

[TAI - Time scale(i)]

International Committee on Global Navigation Satellite Systems (ICG) Pasadena, California 8 - 12 December 2008

ICG Draft Recommendation

International Committee on Global Navigation Satellite Systems (ICG)

considering

- the international value of having many GNSS operational with a composite contribution of several tens of satellites,
- the desirability of using all systems interchangeably,
- the use by GPS of references very close to UTC and ITRF,
- the GLONASS efforts to approach UTC and ITRF,
- the Galileo design referring to UTC and ITRF,
- that other important satellite navigation systems are now being designed and developed*),

recommends

- that the reference times (modulo 1 s) of satellite navigation systems be synchronized as closely as possible to UTC,
- that the reference frames for these systems be in conformity with the ITRF,
- that these systems broadcast, in addition to their own System Time (ST):
 - 1. the time difference between ST and a real-time realization of UTC,
 - 2. a prediction of the time differences between ST and UTC.
- *) Compass, IRNSS, QZSS, various SBAS, ...

ITU meeting on redefinition of UTC Geneva, 6 -10 October 2008

To avoid proliferation of time scales ITU plans to stop application of leap seconds to UTC

- October 2008: ITU Working Party 7A will submit to ITU Study Group 7 project recommendation on stopping leap second
- During 2009 Study Group 7 will conduct a vote through mail among member states
- 2011: if 70 % member states agree World Radio Conference will approve recommendation
- 2013: application of leap second will stop and UTC will become a continuous time scale

Louis Essen:

"..... In 1960s there was a suggestion that astronomical time should be used for sea navigation and domestic purposes, and atomic time for air navigation and scientific work. My experiences with time signals and standard frequency transmissions convinced me that this would cause endless confusion as well as involving duplication of equipment and I argued strongly that a method of combining all the information in one set of transmission must be found....."

48th CGSIC Meeting - Timing Subcommittee

Savannah, Georgia, 16 September 2008

Chair: Włodzimierz Lewandowski, BIPM,

Co-Chair: Victor Zhang, NIST

- 14:00 Introduction Włodzimierz Lewandowski, BIPM
- 14:20 Report from NIST Victor Zhang, NIST
- 14:40 USNO Time Service Demetrios Matsakis, USNO
- 15:00 Timing operations Wendy Kelley, USNO
- 15:10 Progress on time transfer calibration Ed Powers, USNO
- 15:20 Break
- 15:40 Update on the ITU-R WP7A work on the Future of UTC
 - Tom Bartholomew (invited talk)
- 16:00 Time and Navigation Exhibition at the Smithsonian: An Update
 - Andrew Johnston, National Museum of American History
- 16:20 Discussion
- 17:20 Session End