Satellite Navigation Program Status

Presented To: CGSIC

Leo Eldredge, GNSS Program Manager Federal Aviation Administration (FAA)

Overview

- Wide Area Augmentation System (WAAS) Status
- GNSS Evolutionary Architecture Study (GEAS)
- Local Area Augmentation System (LAAS) Status

USG Commitment to GPS

- Based on a Constellation With 24 Nominal Plane/Slot Positions
- 24 Operational Satellites 95% (averaged over any day)
 - All 24 may not be operating
 - Not All SVs May Be Located in Primary Orbit Slots
- 21 of 24 Plane/Slot Positions Must Be Set Healthy and Transmitting a Navigation Signal With 98% Probability (averaged yearly)
- 6 Meter User Range Error (URE)

FAA Satellite Navigation Program

WAS

FAA GNSS Program Status - CGSIC 15 September 2008

WAAS Architecture

38 Reference Stations

3 Master Stations

4 Ground Earth Stations

2 Geostationary Satellite Links

2 Operational Control Centers

FAA GNSS Program Status - CGSIC 15 September 2008

Federal Aviation Administration

Geostationary Satellites (GEO)

Localizer Precision Vertical (LPV) Coverage

FAA GNSS Program Status - CGSIC 15 September 2008

WAAS Avionics Status

General Aviation

- Over 33,000 Units Sold
- Increasing at ~1000 Units Per Month
- New Products Coming to Market in Late 2008

Business & Regional Aircraft

- Over 500 Units Sold Since 2007
- Two Additional Products Coming to Market in Late 2008
- Cessna CJs Delivering with WAAS Avionics in 2009
- Acceptance Rates Should Increase Significantly in 2009

Air Carrier & Cargo Aircraft

- Southwest Airlines Equipping 200 Boeing 737s
- Federal Express Has Equipped 253 Caravan Aircraft
- Horizon Airlines Equipping 48 Bombardier Aircraft
- Helicopter Aircraft Implementing WAAS
 - Significant Growth Projected for First Responders
- WAAS Avionics are Interoperable with Other SBASs

WAAS Approach Procedures

- Projected to Exceed Legacy Systems, eg. ILS By Sep 2008 -

WAAS Procedures to be Published to All Instrument Runways in the NAS by 2018

WAAS Enterprise Schedule

Future Considerations

Galileo (EU)

GLONASS

GPS

FAA GNSS Program Status - CGSIC 15 September 2008

Federal Aviation Administration

Future Considerations

GNSS Modernization

- GPS Dual Frequency (L1/L5) Service Provides Foundation
- Potential for Larger GNSS or Use of Multiple GNSS Constellations
- User Equipment Standards Development for New Signals

WAAS Dual Frequency Upgrade

- Determine Appropriate Level of Dual Frequency Integration Required to Maximize Benefit With Minimum Impact
- Established GNSS Evolutionary Architecture Study (GEAS) to Investigate Long Range Planning for Dual Frequency GPS
 - Develop Architectural Alternatives to Provide Worldwide LPV-200 Service in the ~2020-2030 Timeframe
 - Leverage Lessons Learned on WAAS/LAAS to Identify the Best Architecture Alternative to Meet Aviation Integrity Requirements
 - Participation With The GPS Wing, DoD National Security Space Office (NSSO), DOT Research & Innovative Technology Administration (RITA), and the Joint Planning & Development Office (JPDO) for NextGen

GEAS Panel

Deane Bunce (Co-Chair)	FAA ATO-W		
Per Enge (Co-Chair)	Stanford University		
Leo Eldredge	FAA ATO-W		
Deborah Lawrence	FAA ATO-W		
Calvin Miles	FAA ATO-W		
Kevin Bridges	FAA AVS		
Hamza Abduselam	FAA AVS		
Tom McHugh	FAA ATO-P		
Bill Wanner	FAA ATO-P		
David Schoonenberg	NSSO		
Mike David	NSSO		
Karen Van Dyke	RITA/Volpe		
Ed Sigler	GPS TAC		
Tim Murphy	Boeing Aircraft		

Geoff Harris	G-Wing/Aerospace	
Karl Shallberg	GREI	
Boris Pervan	IIT	
John Dobyne	G-WIng/ARINC	
Karl Kovach	G-Wing/Aerospace	
Eric Atschuler	Sequoia Research	
Chris Hegarty	MITRE	
Young Lee	MITRE	
JP Fernow	MITRE	
Frank Van Graas	Ohio University	
Juan Blanch	Stanford University	
Todd Walter	Stanford University	
Pat Reddan	Zeta Associates	
AJ Van Dierendonck	Zeta Associates	

Determination of Integrity

Aircraft Based

- Integrity is determined on board the aircraft using redundant ranging sources or sensors
- e.g. RAIM, AIME, ...

Ground Based

- Integrity determined external to User
- e.g. SBAS, GBAS, GRAS, GNSS Monitoring, ...

Satellite Based

- Determination of integrity is made on board the satellite using redundant components
- e.g. Clock Monitoring (TKS), Signal Deformation Monitoring (SDM)

Layered Approach

- Ultimate integrity architecture will combine threat detection at all elements
 - Satellite
 - Best time to alarm (TTA) for rapid clock & digital errors
 - Ground
 - Necessary for absolute accuracy
 - Aircraft offers
 - Direct integrity monitoring by user
 - Mitigating ionosphere delays and local errors
- Alternatives trade the degree of aircraft based augmentation (ABAS), constellation geometric robustness, user range accuracy, and augmentation
- Need to find best trade for cost, TTA, integrity performance and constellation dependency

GNSS integrity Channel (GIC)

• Key Feature:

- Integrity Determination
 External to the User
- Key Enabler
 - Rapid Messaging Rate
 - TTA of 6.2 Sec

Key Benefit

- Redundant Ranging Signals Not Required
- Key Challenge
 - Meeting TTA

Time-To-Alert (TTA)

- A significant challenge with a worldwide system (i.e., Galileo or GPS-IIIC integrity) is meeting the 6.2 second TTA requirement
- WAAS is just able to meet TTA with its North American network
- A different approach is required for worldwide system
- Allocate the TTA requirement to the aircraft or satellite fault detection

Relative RAIM: <u>Range Rate Residuals</u>

• Key Feature:

 Real-Time Integrity Determination By User Using Carrier Phase Approach

Key Enabler

- External Monitoring
- Redundant Geometry

Key Benefit

 TTA Latency Relaxed to Minutes

From Prof. van Graas, Ohio University

Absolute RAIM

- Key Feature:
 - Real-Time Integrity
 Determination by the
 User (ABAS)
- Key Enabler:
 - Redundant Ranging Sources
 - 30 or More SVs
- Key Benefit
 - Latency Relaxed to Hours

Difference between predicted and measured pseudoranges toSatellite 5

Preliminary Results

Architecture	Constellation							
	24 minus 1	24	27 minus 1	27	30 minus 1	30		
GIC	86.6%	100%	97.8%	100%	100%	100%		
RRAIM with 30 s coasting	81.2%	99.4%	96.8%	100%	100%	100%		
RRAIM with 60 s coasting	74.4%	98.5%	92.8%	100%	100%	100%		
RRAIM with 300 s coasting	28.0%	76.1%	52.3%	99.6%	93.9%	100%		
ARAIM	7.80%	44.7%	30.6%	94.1%	90.5%	100%		

Note: Predictions Valid for WAAS-Like Integrity Assured URA's of 1 Meter or Less

FAA GNSS Program Status - CGSIC 15 September 2008

GEAS Next Steps

Phase 1 Report – Completed

<u>http://gps.faa.gov</u>

Future Work Plan

- WAAS Dual Frequency Architecture
 - Detailed Analysis and Design Leading to Implementation of the Dual Frequency Architecture for WAAS by 2018
- Dual Frequency GNSS
 - Continued Investigation of ARAIM and RRAIM
- Support to GPS-III/OCX Integrity & Continuity Assurance Activities
 - Provide Assistance to GPS Wing Program Office Team

Local Area Augmentation System (LAAS)

- Precision Approach
 For CAT- I, II, III
- Multiple Runway Coverage At An Airport
- 3D RNP Procedures
 (RTA), CDAs
- Navigation for Closely Spaced Parallels
- Super Density
 Operations

GBAS Pathway Forward

- Cat-I System Design Approval (SDA) at Memphis 2008
- Cat-III Prototype Validation by 2010
- Cat-III SDA Approval by 2012
- Evaluating Potential to Leverage Resources with DoD Joint Precision Approach Landing System (JPALS)

LAAS/GBAS International Efforts

Bremen, Germany

FAA GNSS Program Status - CGSIC 15 September 2008

Summary

- The WAAS Program Has Matured Through Development and is Rapidly Progressing Through Operational Implementation
- GEAS Investigating Future Architecture Alternatives for WAAS and GNSS
- The First Certified LAAS is Expected In Late 2008
- LAAS is Expected to Achieve Cat-III By 2012
- Combined LAAS/JPALS Opportunities are Being Investigated

Questions

http://gps.faa.gov

FAA GNSS Program Status - CGSIC 15 September 2008

