

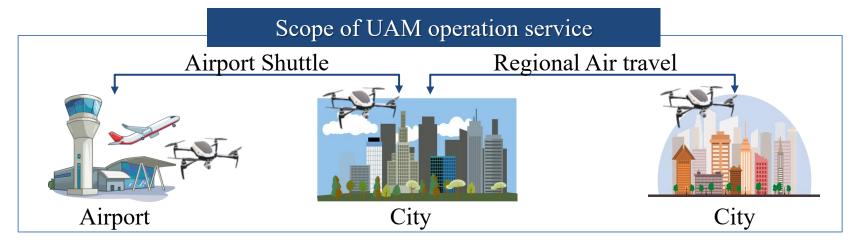
Safety of Life for Urban Air Mobility (UAM): Time-Differenced Carrier Phase (TDCP) RAIM

Changdon Kee

Seoul National University
South Korea

CGSIC Int'l Info. Subcomm. Seoul, South Korea March 21, 2023 Hojoon Jeong

Junesol Song


Jungbeom Kim

Younsil Kim

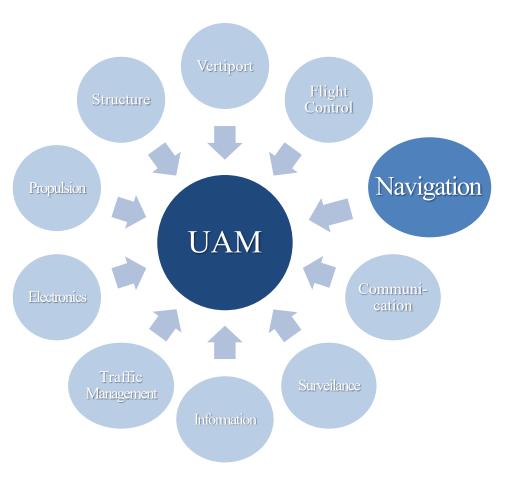
- Urban Air Mobility (UAM) and Safety of Life
- Relative RAIM (RRAIM)
- TDCP RAIM
- Simulation Results
- Conclusions

Urban Air Mobility

Highly automated, cooperative, transportation services in and around urban areas

• NASA: AAM NC

• EU : AMU-LED project


• South Korea: K-UAM

AAM NC : Advanced Air Mobility National Campaign

AMU-LED: Air Mobility Urban Large Experimental Demonstrations

K-UAM : Korean Urban Air Mobility

SBAS : Satellite Based Augmentation System

RAIM : Receiver Autonomous Integrity Monitoring

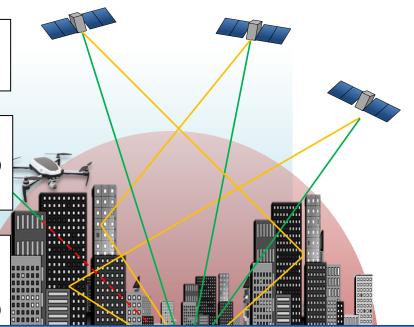
ARAIM: Advanced RAIM RRAIM: Relative RAIM

4 PPP : Precise Point Positioning

- In navigation, high accuracy and high integrity are required for safety of life
 - Ensures safety of both passengers and pedestrians
 - Guarantees
 - Accurate positioning,
 - High integrity in complex environments (ex. buildings)
- SBAS guarantees the requirements in open sky but not in deep urban (blockage by buildings)
- So far, no integrity monitoring methods meet the UAM requirements!
 - Pseudorange based (ex: RAIM, ARAIM)
 - Carrier-phase based (ex: RRAIM, PPP)

- Open Sky (above buildings)
 - ✓ **SBAS** Integrity Monitoring enabled

- Deep Urban
- SBAS signal blocked by buildings

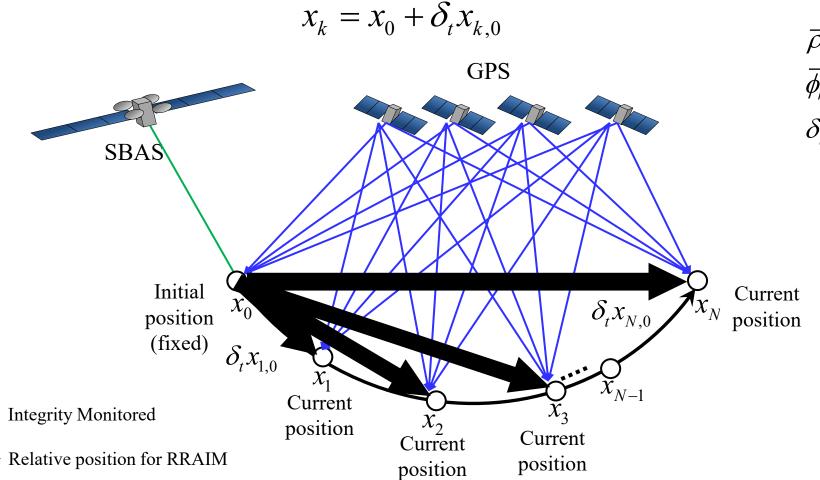


During landing into vertiport, problems occur in integrity!

- Pseudorange measurement based RAIM
 - Extreme multipath due to buildings!

- ➤ Small multipath but long convergence time (~20mins)
- ➤ No guarantee to find correct integer ambiguity!
- Conventional method : RRAIM (Relative RAIM)
 - ➤ No more integer ambiguity (time difference)
 - > Cycle slip has to be detected (for landing interval)

Propose a new carrier based RAIM, which works in Deep Urban environment


Conventional Integrity Method:

RRAIM

(Relative Receiver Autonomous Integrity Monitoring)

- RRAIM (Relative RAIM, use carrier phase instead of pseudorange)
 - Start from integrity guaranteed initial position using SBAS
 - [Current position] = [Initial position] + [Relative position between initial and current epoch]

$$\overline{\rho}_{k} = H_{k}\overline{x}_{k} + \overline{\varepsilon}_{k}$$

$$\overline{\phi}_{k} = H_{k}\overline{x}_{k} + \overline{N}\lambda_{k} + \overline{v}_{k}$$

$$\delta_{t}\overline{\phi}_{k,0} \Box \overline{\phi}_{k} - \overline{\phi}_{0}$$

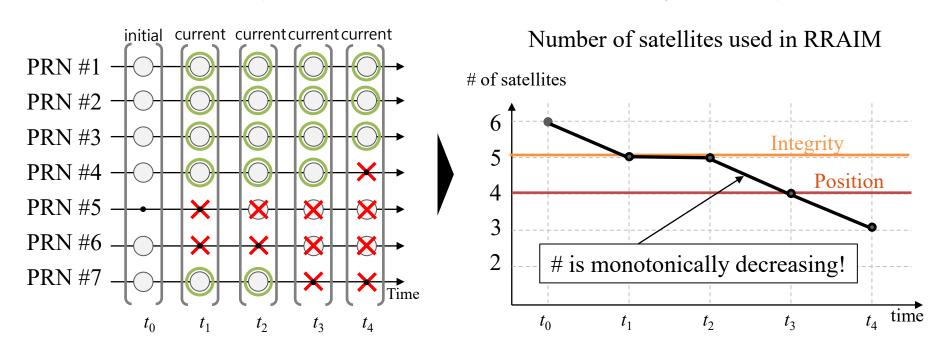
$$\Rightarrow \delta_{t}x_{k,0} (\Box x_{k} - x_{0})$$

 $\bar{\rho}$: psudorange vector ($\sigma_{\rho} \approx 1$ m)

 ϕ : carrier phase vector ($\sigma_{\phi} \approx 1$ mm)

k:epoch

H: position matrix


x: user state

 \bar{N} : integer ambiguity

 λ : wavelength

 $\overline{\varepsilon}$, \overline{v} : bias error + noise

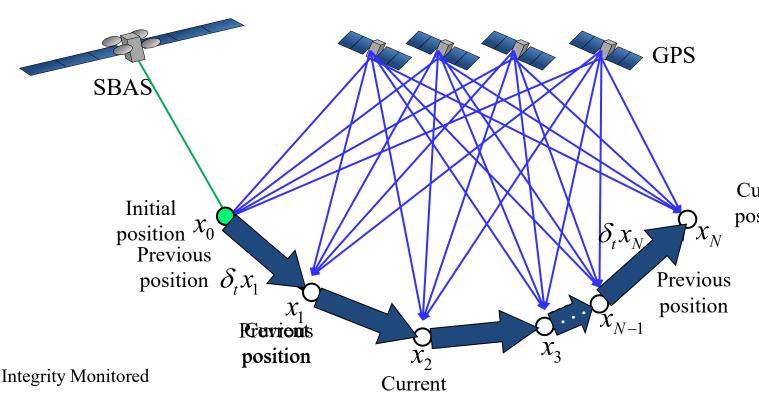
- Cycle slip has to be detected (ex. for 5-10 minutes, extremely difficult for INS!)
- Sensitive to change of satellite in view
 - Only PRNs, seen from initial throughout to current epoch, can be used (# of usable satellites will be monotonically decreased)

PRN #5: new rising SV

PRN #6: temporarily blocked by buildings (similar to cycle slip)

New Integrity Method:

TDCP RAIM

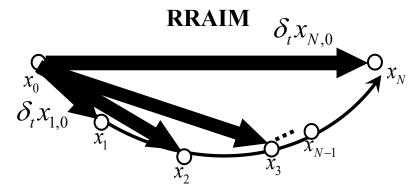

(Time-Differenced Carrier Phase

Receiver Autonomous Integrity Monitoring)

- **Time-Differenced Carrier Phase RAIM (TDCP RAIM)**
 - Start from integrity guaranteed **initial position** using SBAS (same as RRAIM)
 - [Current position] = [**Previous position**] + [Relative position between previous and current epoch]

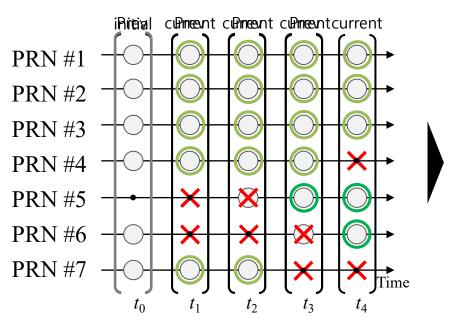
$$x_k = x_{k-1} + \delta_t x_k$$
 (vs. $x_k = x_0 + \delta_t x_{k,0}$)

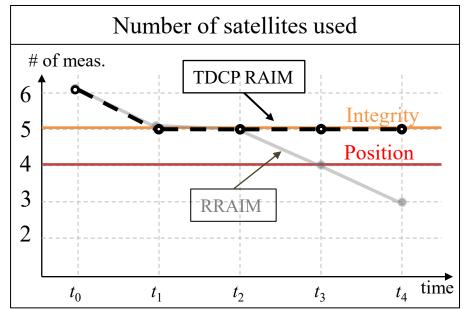
(typically 1 second, or less)


position

$$\delta_{t}\overline{\phi}_{k} \Box \overline{\phi}_{k} - \overline{\phi}_{k-1}$$

$$\Rightarrow \delta_{t}x_{k} \ (= x_{k} - x_{k-1})$$


$$(cf. \ \delta_{t}x_{k,0} = x_{k} - x_{0})$$


Current position

Relative position for TDCP RAIM

- Cycle slip can be easily detected for 1 second interval, or less (with commercial grade MEMS IMU)
- Robust to change of satellite in view
 - All PRNs in view (seen in previous and current epoch) are used

PRN #5: new rising SV

PRN #6: temporarily blocked by buildings

TDCP RAIM uses rising satellites and also temporarily blocked satellites!

Carrier phase measurement : $\overline{\phi} = H\overline{x} + \overline{N}\lambda + \overline{v}$

$$\overline{\phi} = H\overline{x} + \overline{N}\lambda + \overline{v}$$

H: position matrix

 \overline{x} : user state

N: integer ambiguity

 \overline{v} : bias error + noise

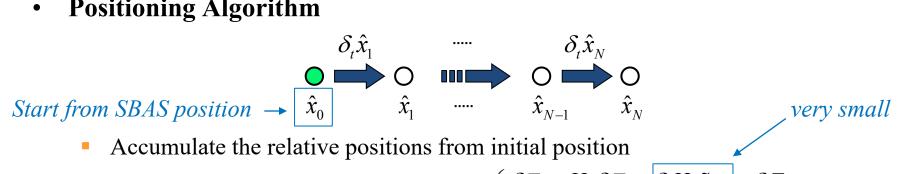
 λ : wavelength

TDCP RAIM time-differenced measurement $(\delta_{t}\overline{r}_{k})$

Eliminate integer ambiguity by time difference (1 second, assumed no cycle slip)

$$\overline{\phi}_{k} = H_{k}\overline{x}_{k} + \overline{N}_{k}\lambda + \overline{v}_{k}$$

$$\overline{\phi}_{k-1} = H_{k-1}\overline{x}_{k-1} + \overline{N}_{k-1}\lambda + \overline{v}_{k-1}$$


$$\begin{split} \mathcal{S}_{t}\overline{\phi}_{k} & \Box \ \overline{\phi}_{k} - \overline{\phi}_{k-1} \\ & = H_{k}\overline{x}_{k} - H_{k-1}\overline{x}_{k-1} + \mathcal{S}_{t}\overline{v}_{k} \\ & = H_{k}(\overline{x}_{k} - \overline{x}_{k-1}) + (H_{k} - H_{k-1})\overline{x}_{k-1} + \mathcal{S}_{t}\overline{v}_{k} \\ & = H_{k}\mathcal{S}_{t}\overline{x}_{k} + \overline{\mathcal{S}}_{t}H_{k}\overline{x}_{k-1} + \mathcal{S}_{t}\overline{v}_{k} \end{split} \qquad \begin{array}{c} \text{where } \mathcal{S}_{t}[\]_{k} \ \Box \ [\]_{k} - [\]_{k-1} \\ \overline{x} : \text{true position} \\ \hat{x} : \text{estimated position} \\ \tilde{x} : \text{estimation error } (\Box \ \end{array}$$

 \tilde{x} : estimation error $(\Box \hat{x} - \overline{x})$

Define new measurement: (Geometry change compensated)

$$\begin{array}{c|c}
\hline
S_{t}\overline{r_{k}} \Box S_{t}\overline{\phi_{k}} - \overline{S_{t}}H_{k}\hat{x}_{k-1} \\
\hline
= H_{k}S_{t}\overline{x_{k}} + S_{t}H_{k}(\overline{x_{k-1}} - \hat{x}_{k-1}) + S_{t}\overline{v_{k}} \\
= H_{k}S_{t}\overline{x_{k}} - \overline{S_{t}}H_{k}\tilde{x}_{k-1} + S_{t}\overline{v_{k}} \quad \text{where } \tilde{x}_{k-1} \Box \hat{x}_{k-1} - \overline{x}_{k-1})
\end{array}$$

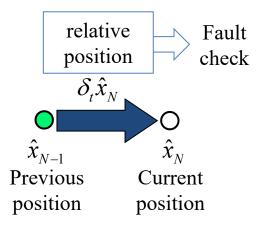
Positioning Algorithm

$$\delta_{t}\hat{x}_{k} = S_{k}\delta_{t}\overline{r}_{k}, \quad \text{where} \begin{pmatrix} \delta_{t}\overline{r}_{k} = H_{k}\delta_{t}\overline{x}_{k} - \delta_{t}H_{k}\widetilde{x}_{k-1} + \delta_{t}\overline{v}_{k} \\ S_{k} : \text{weighted pseudo-inverse of } H_{k} \end{pmatrix}$$

$$\therefore \hat{x}_{N} = \hat{x}_{0} + \sum_{k=1}^{N} \delta_{t}\hat{x}_{k} \quad \text{where } \delta_{t}\hat{x}_{k} \square \hat{x}_{k} - \hat{x}_{k-1}$$

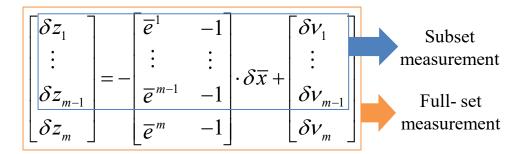
$$\therefore \hat{x}_N = \hat{x}_0 + \sum_{k=1}^N \delta_t \hat{x}_k \quad where \ \delta_t \hat{x}_k \ \Box \ \hat{x}_k - \hat{x}_{k-1}$$

Correlation exists in solutions between initial position error (\tilde{x}_0) and current epoch (\hat{x}_1)


$$\begin{aligned} \hat{x}_1 &= \hat{x}_0 + \delta_t \hat{x}_1 \\ &= \overline{x}_1 + \left(I - S_1 \delta_t H_1\right) \tilde{x}_0 + S_1 \delta_t \overline{v}_1 \\ &\vdots \end{aligned} \end{aligned} \begin{cases} where \ \delta_t \hat{x}_1 = S_1 \delta_t \overline{r}_1 \\ &= \left(\overline{x}_1 - \overline{x}_0\right) - S_1 \delta_t H_1 \tilde{x}_0 + S_1 \delta_t \overline{v}_1 \end{aligned}$$

Final TDCP position based on initial SBAS position error (for covariance computation)

$$\hat{x}_N \approx \overline{x}_N + \left(I - \sum_{k=1}^N S_k \delta_t H_k\right) \tilde{x}_0 + \sum_{k=1}^N S_k \delta_t \overline{v}_k$$


• Integrity Monitoring (Solution Separation Method)

Fault monitoring

: Integrity checked position

Test satistics

Difference between full-set and subset solution as test statistics (q_i)

$$q_i \square \left| \delta_t \hat{x}_N - \delta_t \hat{x}_{N,i} \right|$$

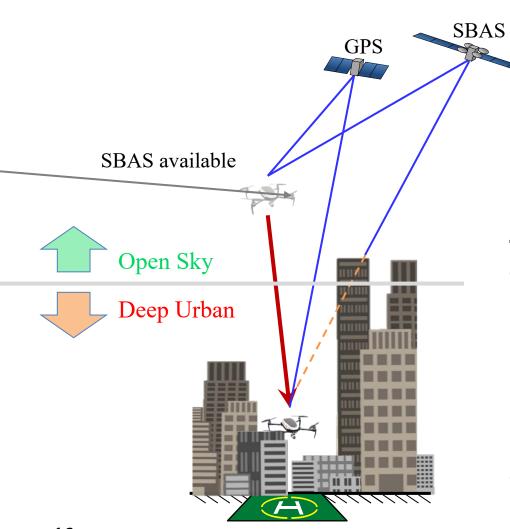
Vertical Protection Level (VPL)

• H_0 : normal case / H_1 : fault case

$$\begin{aligned} VPL_{H_0} &= k_{ff} \times \sigma_N + \tilde{x}_{bias, \max} \\ VPL_{H_1} &= \max_i \left(k_{md} \times \sigma_{N,i} + T_i + \tilde{x}_{bias, \max,i} \right) \\ VPL &= \max \left(VPL_{H_0}, VPL_{H_1} \right) \end{aligned}$$

where
$$k_{ff} = Q^{-1} \left(1 - I_{REQ,H0} / 2 \right)$$

$$k_{md} = Q^{-1} \left(1 - I_{REQ,H1} / P_{md} \right)$$

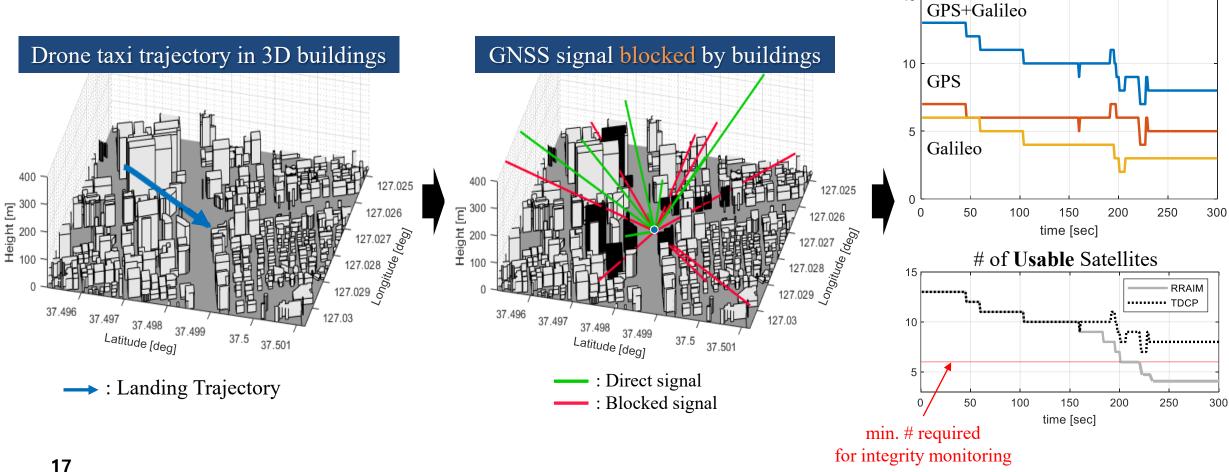

$$P_{md} = {}_{n}C_{1} \times \left(1 - r_{sat} \right) \times r_{sat}^{n-1}, r_{sat} = 10^{-5} / h$$

$$\sigma_{N} : \sqrt{\operatorname{cov}(\hat{x}_{N-1} + \delta \hat{x}_{N})}$$

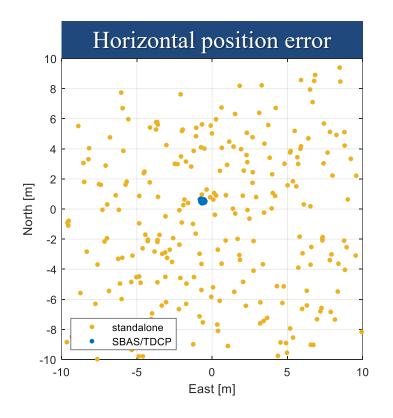
$$\sigma_{N,i} : \sqrt{\operatorname{cov}(\hat{x}_{N-1} + \delta \hat{x}_{N,i})}$$

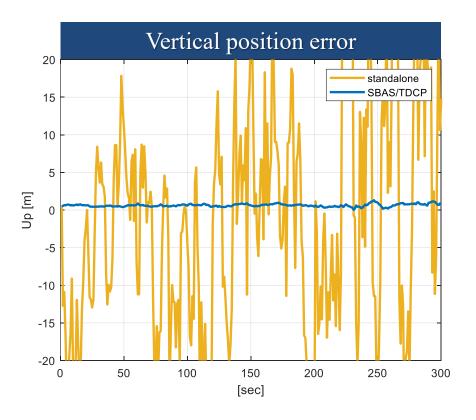
$$\tilde{x}_{bias, \max} : \text{bias of initial position error}$$

Simulation Results

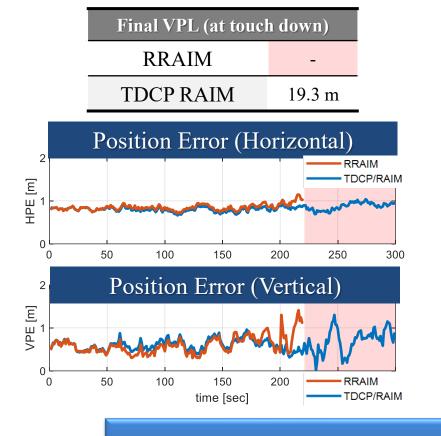

Landing Environment	Navigation
Open Sky	SBAS
Deep Urban	TDCP RAIM

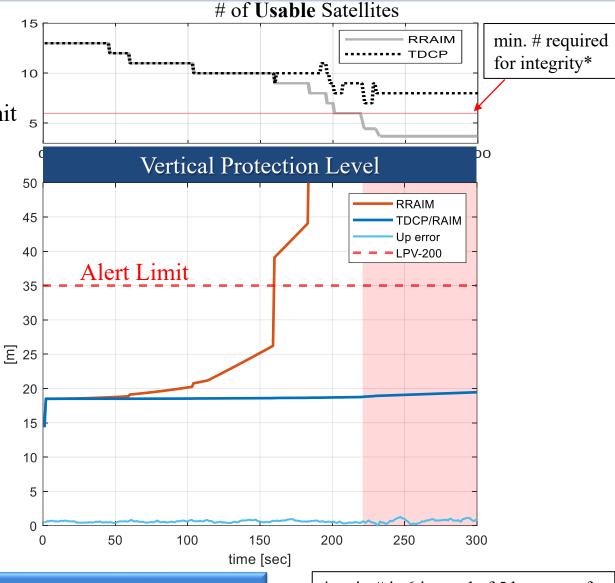
- SBAS is available at initial epoch only
- Integrity requirement : LPV-200, VAL = 35m

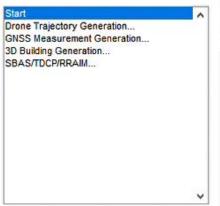

	Descirption	Data
	Orbit error	Broadcast orbit data
	Ionospheric delay	GIM data
	Tropospheric delay	Empirical model
GPS	Receiver noise (carrier phase)	Gaussian process
	Multipath (carrier phase)	1^{st} order markov process $\sigma = 13 \text{cm}$, $\tau = 7 \text{sec}$ (10 times of open sky)
SBAS (WAAS)	Residual orbit error	'WAAS Performance analysis
	Residual Ionospheric error	report'

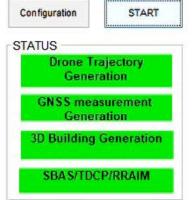

of Visible Satellites

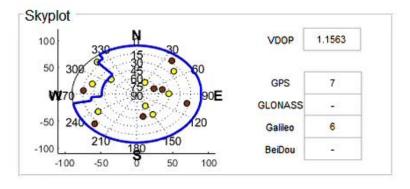
- Landing of a drone taxi to vertiport in deep urban (ex. Kangnam in Seoul)
 - Find visible satellites using 3D building data
 - # of visible satellites (by drone taxi) keeps changing during landing interval

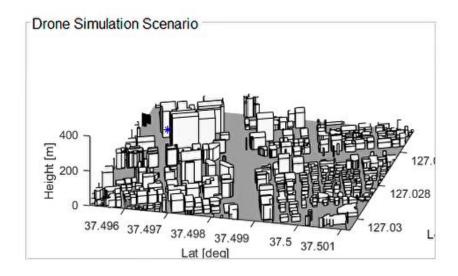


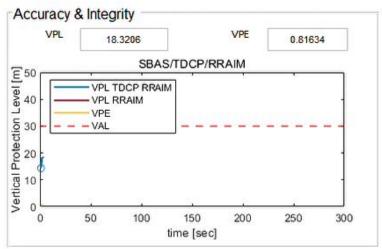

- After SBAS blocked by buildings (Deep Urban)
 - Standalone position (using pseudorange) degraded severely due to multipath by buildings
 - TDCP navigation with SBAS correction (received before the blockage)
 - Maintain SBAS level position accuracy throughout landing


- Protection Level (Integrity)
 - RRAIM : Not available due to lack of usable satellites
 - TDCP RAIM : Keep Protection Level below Alert Limit 5






MATLAB GUI Based Simulation Tool for SBAS/TDCP/RRAIM in Urban Environment



Conclusions

- UAM requires high accuracy and **high integrity** for safety of life in Deep Urban
- SBAS guarantees the requirements in open sky but not in Deep Urban
- So far, no integrity monitoring methods meet the UAM requirements
- Proposed TDCP RAIM for UAM
 - Uses 1 sec time-differenced carrier phase measurement (instead of 5 mins for RRAIM)
 - Cycle slip detection for 1 sec interval is absolutely possible (with commercial grade MEMS IMU)
 - Robust to change of satellite in view (utilize newly visible satellites)
 - Integrity to be maintained for 5 mins or more throughout landing on vertiport
 - Can be applied in Integrity Monitoring of Autonomous Vehicle operated in Deep Urban
- Simulation Results for Landing Approach of Drone Taxi to Vertiport in Deep Urban
 - RRAIM: available at the beginning but failed in the middle of approach (lack of usable satellites)
 - TDCP RAIM was available throughout the whole approach to vertiport
- Results show that TDCP RAIM guarantees safety of life for UAM!