

GPS Adjacent Band Compatibility Assessment

Munich Satellite Summit

March 2017

Objective

- Collect the necessary data to determine adjacent band transmit power levels that can be tolerated by existing GNSS receivers for civil applications
 - Excludes certified aviation applications that are considered in a parallel effort conducted by the FAA
- Data collected and discussed in this brief:
 - Radiated test data: collected in an anechoic chamber
 - Conducted test data: collected in a laboratory environment
 - Antenna characterization data
 - Integrated antennas: collected in an open sky environment
 - External antennas: collected in an anechoic chamber

Overview

- Developed GPS/GNSS receiver test plan and test procedures
 - Held many public workshops to obtain stakeholder input
- Coordinated government and manufacturer participation and executed Non Disclosure Agreements (NDAs)
- Developed/validated radiated RF test environment
- Carried out GPS/GNSS receiver testing and antenna characterization
 - Radiated receiver testing White Sands Missile Range, NM
 - Wired (conducted) receiver testing Zeta Associates, VA
 - Antenna Characterization MITRE Corporation

Produced initial 1 dB Interference Tolerance Mask (ITM) results

ITM = Interference power (IP) resulting in 1 dB degradation 🔊 to carrier-to-noise-ratio (CNR)

J.S. Department of Transportation

Radiated Testing Overview

- GPS receiver testing was carried out April 25-29, 2016 at the Army Research Laboratory's (ARL) Electromagnetic Vulnerability Assessment Facility (EMVAF), White Sands Missile Range (WSMR), NM
 - EMVAF 100' x 70' x 40' Anechoic Chamber
 - Air Force/GPS Directorate conducted testing week of April 18th
- □ Tests performed in the anechoic chamber:
 - Linearity (receivers CNR estimators are operating in the linear region)
 - 1 MHz Bandpass Noise (Type 1)
 - 10 MHz LTE (Type 2) Focus of this briefing
 - Intermodulation (effects of 3rd order intermodulation)

Research and Technology

Categories of GPS/GNSS Receivers Tested

- 80 receivers were tested representing six categories of GPS/GNSS receivers:
 - General Aviation (non certified)
 - General Location/Navigation
 - High Precision & Networks
 - Timing
 - Space Based
 - Cellular

Research and Technology

Participation in Testing

- Participation included DOT's federal partners/agencies and GPS manufacturers
 - United States Coast Guard (USCG)
 - National Aeronautics and Space Administration (NASA)
 - National Oceanic and Atmospheric Administration (NOAA)
 - United States Geological Survey (USGS)
 - Federal Aviation Administration (FAA)
 - United States Department of Transportation (USDOT)
 - General Motors (GM)
 - u-blox
 - NovAtel
 - Trimble
 - John Deere
 - UNAVCO

GNSS Signals Used in Testing

Signal
GPS L1 C/A-code
GPS L1 P-code
GPS L1C
GPS L1 M-code
GPS L2 P-code
SBAS L1
GLONASS L1 C
GLONASS L1 P
BeiDou B1I
Galileo E1 B/C

U.S. Department of Transportation

Interference Test Signal Frequencies and Power Profiles

Chamber Setup

Data Processed to Produce a 1 dB Interference Tolerance Mask (ITM)

 Example for determining ITM for 1 frequency (1545 MHz) for PRN 31 for one of the Devices Under Test (DUT)
CNR vs. Time

U.S. Department of Transportation

10

Aggregate Results for L1 C/A High Precision Category

The lower the ITM percentile the more protection it offers. The bounding ITM (black) protects all tested receivers

Research and Technology

11

L1 C/A Bounding Masks Compared With Certified Aviation Mask

U.S. Department of Transportation Office of the Assistant Secretary for

Research and Technology

Example Min. Separation Distance vs. Received Power Single Transmitter with Free Space Path Loss

Summary of Bounding Mask Results

U.S. Department of Transportation Office of the Assistant Secretary for

Research and Technology

14

Wired/Conducted Testing Overview

□ Tests executed week of 25 July with 14 GNSS receivers

- Representative set of equipment from chamber testing from each receiver category (except space based)
- Receivers tested were USG provided

Test Objectives

- Receiver characterizations for comparison with chamber results
- Inclusion of OOB interference at
 - FCC limit of -70 dBW/MHz
 - Proposed limits of -100 (base stations) and -105 (handsets) dBW/MHz
- GNSS signal re-acquisition characterizations

Same test instrumentation for wired as with radiated tests

- GNSS playback (MITRE)
- Interference system with modifications to support OOBE and acquisition test requirements
 U.S. Department of Transportation

Normalizing Interference Power to IP@1dB in the Acquisition Analysis

U.S. Department of Transportation

Summary of Acquisition Performance at 1550 MHz

Number of DUTs

U.S. Department of Transportation Office of the Assistant Secretary for Research and Technology

17

Summary and Next Steps

□ Results:

- Tolerable interference power in form of bounding ITMs have been developed for all category of receivers tested on a per GNSS signal type basis
- Wired (lab) tests show good consistency with radiated test results when antenna filtering characteristics are taken into account.
- 1-dB degradation proved to be a good indicator of the onset of acquisition degradation especially for low elevation satellites

□ Next Steps:

- Evaluate use case scenarios
- Use inverse modeling to transform the bounding masks to allowable transmit power levels for each category
- Develop final report

Backup

Receiver Test List (1/2)

No.	Receiver			
1	Trimble SPS461			
2	Furuno GP-33			
3	TriG			
4	TriG V2			
5	Septentrio PolaRx4TR Pro			
6	Ashtech Z-12			
7	Javad Delta-3			
8	Ashtech uZ-CGRS			
9	Javad EGGDT-160			
10	Novatel OEM628V-G1S-B0G-TTN-H			
11	Javad Delta II			
12	Septentrio PolaRx4Pro			
13	Trimble NETR5			
14	Trimble NETR5			
15	Trimble NETR9			
16	Leica GRX1200GGPRO			
17	Trimble 5700			
18	Leica GRX1200GGPRO			
19	Trimble NETRS			
20	Trimble NETRS			

No.	Receiver			
21	Trimble NETRS			
22	Topcon Net-G3A Sigma			
23	Garmin GPSMap 295			
24	Garmin - GPSMap 696			
25	Garmin - Area 560			
26	Garmin - GLOGPS (GPS & GLONASS)			
27	Dual Electronics - SkyPro XGPS 150			
28	EVA-7M EVK-7EVA-0			
29	MAX-7C EVK-7C-0			
30	MAX-7Q EVK-7N-0			
31	EVA-M8M EVK-M8EVA-0			
32	LEA-M8F EVK-M8F-0			
33	MAX-M8Q EVK-M8N-0			
34	LEA-M8S EVK-M8N-0			
35	uBlox EVU-6P-0-001			
36	SiRF III			
37	Trimble NETR5			
38	Symmetricom Xli			
39	Symmetricom-GPS			
40	Trimble SMT360 GPS receiver			

Receivers included in the wired/conducted test

Research and Technology

Receiver Test List (2/2)

No.	Receiver		
41	Dynon 250		
42	Dynon 2020		
43	Garmin EDGE 1000		
44	Garmin GPSMAP 64		
45	Garmin ETREX 20x		
46	Garmin FORERUNNER 230		
47	Garmin GPSMAP 741		
48	Symmetricom Xli		
49	JAVAD Triumph-1		
50	Hemisphere R330		
51	NAVCOM SF3050		
52	Symmetricom SyncServer S350		
53	Arbiter Systems 1088B		
54	Arbiter Systems 1094B		
55	Schweitzer Eng. Labs SEL-2401		
56	Android S5		
57	Android S6		
58	Android S7		
59	Supercruise "VCP"		
60	Supercruise "VCP"		

No.	Receiver
61	EVK-M8N
62	EVK-M8T
63	MAX-M8Q
64	EVK-7P
65	EVK-6n
66	NovAtel 628 Card w/ Flex pack
67	Trimble Ag-382
68	Trimble Geo 7X
69	Trimble Bison III
70	Trimble R8
71	Trimble SPS985
72	Trimble SPS855
73	Trimble Acutime 360
74	Trimble Ag-382
75	SF3000
76	SF3000
77	Septentrio PolaRx5TR Pro
78	Septentrio PolaRx5TR Pro
79	Trimble NetRS
80	Trimble NETR9

Receivers included in the wired/conducted test

Test Grid

U.S. Department of Transportation

Office of the Assistant Secretary for Research and Technology 22

GNSS Signal Generation and Recording

U.S. Department of Transportation Office of the Assistant Secretary for

Research and Technology

GNSS Signal Playback and Transmission

U.S. Department of Transportation

List of External Antennas Tested

Manufacturer	Model
AeroAntenna	AT575-142-614-50
AeroAntenna	AT2775-42SYW-TNCF-000-RG-41_MN
Arbiter	AS0087800
Garmin	GA-25
Garmin	GA-38
Hemisphere	804-3059-0
Leica	AX1202GG
Navcom	82-001020-3001LF
PCTel	3977D
Trimble	Bullet 360 Antenna 101155-10
Trimble	Choke Ring 29659-00
Trimble	Zephyr 41249-00
Trimble	Zephyr Geodetic 2 55971-00
Ublox	ANN-MS-0-005

