Results from 15 years of data from the SWEPOS network

Jan Johansson, Martin Lidberg, Ragne Emardson and many others jan.johansson@chalmers.se

Chalmers University of Technology SP Technical Research Institute of Sweden Swedish Meteorological and Hydrological Institute (SMHI) National Land Survey of Sweden

Department of Radio and Space Science

Chalmers University of Technology

The Glacial Isostatic Adjustment (GIA) visible in Fennoscandia

Glacial Isostatic Adjustment (GIA)

(From Bergstrand, 2002)

CHALMERS

a) The relaxed earth

- b) The earth surface are depressed due to the load from the ice-sheet.
- c) The earth rebounds when the iceload has disappeared

Determination of horizontal rates and absolute land uplift values need a Geodetic Reference Frame

Chalmers University of Technology

The BIFROST network

Period of analysis: Aug. 1993 – Oct. 2008 Totally: 83 sites

GAMIT/GLOBK analysis -Similar strategy as past

-ITRF2005

GIPSY

 Precise Point Positioning (PPP) using JPL products
Ambiguity fixing
Other models similar to the GAMIT setup
⇒ VALIDATION OF THE GAMIT SOLUTION

Time series of GPS positions before editing

UME0 North Offset 7077486.006 m rate(mm/yr)= 13.25 ± 0.02 nrms= 0.95 wrms= 2.0 mm # 2879 KIVE North Offset 6993076.287 m rate(mm/yr)= 11.85 <u>+</u> 0.03 nrms= 0.81 wrms= 2.0 mm # 1916

Vertical velocity

70°

60°

50°

Chalmers University of Technology

ITRF2005 ITRF2000 New GIA model

Ekman (1998) based on:

- mareographs and levellings,
- 1.2 mm/yr eustatic sea level rise
- change of the geoid based on Ekman & Mäkinen (1998)

Compared to the ITRF2000 values:

meanStd (mm/yr)ITRF20050.40.1GIA model-0.40.5Ekman-0.40.6

The new station velocites university of Technology

The new GAMIT/GLOBK solution (in ITRF2005) And GIA model Validation using GIPSY (0.1, 0.1, 0.2) (n,e,u) mm/yr

New GIA model minus GPS, "best sites" (0.3, 0.2, 0.3) (n,e,u) mm/yr

DIFRUSI projeci

Ongoing re-analysis with GIPSY-OASIS using > 200 stations 1993-2009 (to be ready by 2010-03-01)

Europe

Fennoscandian

Tropospheric model

Near Real Time (NRT) Water Vapor Estimation for Weather Forecasting

- Blue: "cool and dry" air
- Red: "warm and humid" air

Department of Radio and Space Science

NKG/NGAA analysis center

- GNSS data processing center handling data from 300-500 stations every hour
- Results (i.e. integrated tropospheric water vapor) above all stations delivered to E-GVAP (EUMETNET) no later than 40 minutes after full hour.

Estimated "climate change" in Sweden relative to the period 1961-1990

Red line shows Rossby Centres most recent simulation of "climate change". Grey indicates results from 4 earlier simulations.

Why monitor the atmospheric water vapour content?

The increase of the global mean of Integrated Precipitable Water Vapour (IPWV) is expected to be ~ 6 [%/K] (following the Clausius-Clapeyron relation assuming conservation of relative humidity [Trenberth et al., Bull. Am. Meteorol. Soc., 2003]).

The global mean of IPWV is 24.9 mm [Trenberth and Smith, J. of Climate, 2005].

ERA40 shows [Bengtsson et al. JGR, 2004]: +0.11 K/decade in global temperature 1979–2001 +0.36 mm/decade in IPWV 1979–2001 — which is too large by a factor of 2 (0.11 K/decade * 6%/K * 24.9 mm = 0.16 mm/decade), which is explained by artifacts in the global observing system.

All this means that accurate observations of the IPWV are fundamental in climate monitoring / climate research.

IPWV trends for some stations in Sweden and Finland

Department of Radio and Space Science

IWV trends over Sweden and Finland

- Analysis period: 10 years, November 16, 1996 – November 15, 2006
 - IWV trends varies from -0.5 to +1.5 kg/m²/decade
- Uncertainties in the trends are ~0.4 kg/m²/decade (taking temporal correlations into account)

Comparison with climate models

Average for all seven stations: $GPS - ERA = -0.2 \pm 0.4 \text{ mm}$ $GPS - RCA2 = -0.3 \pm 1.0 \text{ mm}$ $GPS - RCA3 = -1.0 \pm 0.9 \text{ mm}$

- The average difference between GPS derived IPWV with IPWV from ERA and RCA models, for a few stations.
- Errorbars indicate the RMS scatter around the average.
- In general larger differences for the southern stations. Could be due to higher IPWV in the south.
- RCA3 model has a larger bias but a slightly lower RMS compared to the RCA2. This is in agreement with other investigations which indicate that RCA3 overestimates the IPWV.

Ongoing GPS data and numerical weather model analysis

More than 100 stations

GPS data processed with GIPSY 5.0

Now data from 1997 to 2006

Later this year: 1993–2009

Conclusion: GNSS give important contributions to scientific investigations (e.g. geophysics and atmosphere – climate change) as well as weather forecasting

What will happen now?

- Process the GPS data from > 200 European sites from 1993 to 2009
- Comparisons to the numerical weather models (ECMWF and RCA model) and geophysical models (tectonic plate motion, glacial isostatic adjustment historic and current, etc)
- Try to understand the differences ...