

Satellite Navigation Program

Joe Fee International Technical Program Manager Federal Aviation Administration

Basic GPS System

- Space Segment
 - 24 Satellites
 - 6 Orbital Planes
 - 4 Satellites per Plane
 - Orbit at Approximately 11,000
 Nautical Miles Above the Earth
 - Orbits Every 12 Hours

- Ground Control Segment
 - Master Control Station, Colorado Springs
 - 5 Monitor Stations at Worldwide Locations

Wide Area Augmentation System (WAAS) Architecture

269a_G00AUG09_JF

WAAS System Status

Communications

- Satellites
 - 2 of 2 on Orbit
- Terrestrial Communications Links Installation Complete

Hardware

- WAAS Reference Stations
 - 25 of 25 WRSs Installed/Tested (as of 6/3/98)
- WAAS Master Station
 - 2 of 2 WMSs Installed/Tested (as of 6/3/98)

Key Issues

- Stability
- Integrity

WAAS Key Issues

- Stability
 - 21-Day Stability Test Completed June 30, 2000
 - Public Announcement of SIS Availability for Non-Safety Applications - Aug 24, 2000
- Integrity
 - Meeting FAA Integrity Requirement (Safety) is Now Most Significant Schedule Driver
 - Integrity Requirements (Precision Approach)
 - 10⁻⁷/Approach
 - Time to Alarm: 6.2 Seconds for LNAV/VNAV
 - 5.2 Seconds for GLS

FAA Response to Integrity Issue

- Formed WAAS Integrity Performance Panel (WIPP)
 - FAA Established Team of Experts in January 2000 To Work Closely With Raytheon to Identify Most Cost-Effective and Expedient Solution
 - Team Includes FAA, MITRE, Stanford University, Ohio University, JPL
 - WIPP Actions:
 - Identify a Path to Achieve LNAV/VNAV Integrity
 - Identify Migration Path to GLS
- Chartered Independent Review Board (IRB)
 - Reports Directly to FAA Administrator on WIPP Products and Other Program Activities

WAAS Operational Status

- Initial Operational Capability with LNAV/VNAV in 2002
 - Vertical Guidance Down to 350 Feet Above Threshold
- Precision Approach Capability Equivalent to Category I ILS
 - Continuing Development

International Status

Canada

- Transitioning to Operational Canadian WAAS (CWAAS)
- Future Agreement Underway to Integrate WAAS and CWAAS

Mexico

- Working Cooperatively With the FAA to Install 3 WAAS Testbed Stations (NSTB Single-strand Reference Stations) in Mazatlan, Merida, and Mexico City
- Preparing to Conduct Joint Faa/mexico Tests to Define Mexico Operational WAAS Participation, Expected Benefits and Overall System Performance

International Status (Con't)

South America

- The Caribbean and South American (CAR/SAM) Region Is Committed to a GNSS Solution As a Foundation for a Larger CNS/ATM Transition Within Latin America
- The CAR/SAM Test Bed (CSTB) Will Be Based on WAAS Testbed Stations (NSTB Single-strand Reference Stations)
 - Will Provide Test Capability for All of South America, Central America, and the Caribbean
- In the Future, LAAS Prototype Equipment Will Be Used to Conduct Tests for Providing a Precision Approach Capability to the Region

International Status (Con't)

Japan/Europe

- Interoperability Working Group (IWG) Established to Discuss Critical Interoperability Issues Important to Satellite Based Augmentation Systems (SBAS) Providers
- IWG/1 Was the First Such Meeting Between <u>All</u> SBAS Providers, Hosted by U.S. - Aug 97
- Seven Additional Meetings Have Been Held in Europe, Canada and Most Recently in Japan (May 2000)

LAAS Background

- Government Industry Partnerships Signed (4/99)
 - Raytheon and Honeywell Teams
- LAAS Flight Tests in Atlantic City, NJ (8/99)
 - ATA, FAA, and UPS Participated
- LAAS Flight Trials in Memphis, TN (11/99)
 - ATA, FAA, and FedEx Participated

- Install 20 CAT I LAAS Deginning III 200
- Install First CAT III LAAS in 2005
- Plan Calls For a Total of 160 LAAS
 - 46 CAT I
 - 114 CAT III

Practical Aspects of Satellite Navigation

• Routes

- Direct
- Independent of Ground Infrastructure

• Approaches

- Greater Uniformity
- More Precise / Easier to Fly
- Vertical Guidance Available for Most Airports

Status of GPS Approach Procedures

• 2,353 GPS Non-precision Procedures Have Been Published

• 1,057 of the GPS NPA's Provide New Capability to Runways that Previously Did Not Have a Straight-In IFR Approach

• 146 LNAV/VNAV Approaches Have Been Developed

269a_G00AUG09_JF

WAAS Procedures Development PLAN

	99	00	01	02	03	04	05	06	07	08	Total
WAAS	0	50*	490	490	490	485	485	485	485	150	3610
LNAV/VNAV	0	50 *	490	490	490	485	485	485	485	150	3610
LNAV**	490	490	490	490	490	485	485	485	485	0	4340
Helicopter	10	10	10	10	10	15	15	15	15	0	100

* Minimum.

** LNAV (TSO-129) Procedures will be reaccomplished when overlying WAAS and LNAV/VNAV are developed.